您当前所在位置:首页 > 考研 > 考研辅导 > 数学

2013年考研数学高效复习指导:归纳总结掌握数学思维方法

编辑:zhangf

2012-10-30

精品学习网收集整理了,2013年考研数学高效复习指导:归纳总结掌握数学思维方法,希望对广大考生有所帮助!

2013年考研数学高效复习指导:归纳总结掌握数学思维方法

由于考研数学的知识点涉及面很广,而一张卷子能考查的覆盖面是有限的,那很自然会在综合要求上有所提高,试想一道仅涉及求导数的题目和一道把求导、极值和空间解析几何结合起来的题目哪个更容易作为考题?

还有一些数学上的思想方法:分类讨论、数形结合、微元分析等。因为高等数学里面函数的地位是很重的,所以很有必要熟悉一些常用函数的性态,在涉及到此的时候最好能数形结合,便于分析,而且不要仅限于直角坐标的,极坐标下某些曲线的图形也应该掌握,比如星形线、对数螺线等,如果把对象扩大到空间坐标系,那还有各种旋转面、柱面、锥面等,要会写它们的柱坐标或者球坐标方程,这在求重积分的时候是重要的解题手段。在涉及到利用对称性时,数形结合有助于分析。至于分类讨论,线性代数用得比较多,尤其是在涉及线性方程组的题目时,对于未知参数常常需讨论取值。微元分析可谓是大学数学里最重要的思维方法了,不仅数学要用到,很多后续课程都要用到,具体的思路大家可以参考定积分的应用部分,书上也有很多具体例子,就不详细解释了,因为它实在是太有用了,所以建议大家必须熟练掌握。

考研里的应用题就是一个从实际问题到数学模型的建模过程,然后再对这个数学模型求解,那么如何建立?一般就都是用微元法分析了,比如求面积、体积、弧长、变力作功、流量等等,从根本上来说都是相通的。有时还会结合极值问题,分一元函数和多元函数的极值两部分,多元函数有条件极值和非条件极值。

标签:数学

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。