编辑:lirj
2013-03-20
鉴于考生们对考研辅导数学十分关注,我们编辑小组在此为大家搜集整理了“13年考研高等数学考查焦点汇总”一文,供大家参考!
13年考研高等数学考查焦点汇总
数学一 | 数学二 | 数学三 | |
函数、 极限、连续 | 利用重要极限、无穷小的性质及等价无穷小求极限;极限存在准则。 | 利用重要极限、无穷小的性质及等价无穷小求极限;极限存在性;函数连续性与间断点的讨论。 | 利用重要极限、无穷小量的性质计算极限;极限存在性问题;函数的连续性与间断点的分类。 |
一元函数微分学 | 显函数、隐函数、参数方程确定的函数、分段函数求导数;利用中值定理证明等式与不等式,包括辅助函数的构造;用洛必达法则求极限;利用单调性证明不等式;方程根的讨论;极值问题。 | 利用中值定理证明等式与不等式,包括辅助函数的构造;洛必达法则求极限;导数的定义;方程根的讨论;极值、凹凸与拐点问题;曲率与曲率圆。 | 显函数、隐函数、参数方程确定的函数、分段函数求导数;应用中值定理证明等式与不等式;单调性与极值,凹凸性与拐点,导数的经济应用。 |
一元函数积分学 | 利用换元积分法与分部积分法计算简单的积分;积分上限函数的求导问题;积分中值定理;积分基本性质的应用与积分证明问题(包括周期函数的积分性质、对称区间上函数的积分性质、单调函数的积分性质等)。 | 利用换元积分法与分部积分法计算简单的积分;积分上限函数的求导问题;定积分的几何定义;积分基本性质的应用与积分证明问题(包括周期函数的积分性质、对称区间上函数的积分性质、单调函数的积分性质等);反常积分。 | 利用换元积分法与分部积分法计算积分;变限积分函数的导数;定积分的计算、证明及应用。 |
向量代数和空间解析几何 | 平面及直线方程的基本形式;距离问题(包括点到平面的距离、点到直线的距离等);求特殊曲面的方程问题。 | ||
多元函数微分学 | 显函数、复合函数、隐函数及隐函数组求偏导;多元函数微分学的几何应用—空间曲线的切线与法平面、空间曲面的切平面与法线;无条件极值与条件极值,最值。 | 多元复合函数的偏导数;隐函数及隐函数组求偏导;多元函数的极值、最值和条件极值;二重积分的计算。 | 多元复合函数、隐函数及隐函数组求偏导;多元函数无条件极值与实际问题的条件极值;二重积分的计算。 |
多元函数积分学 | 二重积分、三重积分、曲线积分、曲面积分的计算方法;格林公式、高斯公式应用于计算曲线积分、曲面积分;曲线积分与路径无关的问题。 | ||
无穷级数 | 常数项级数的基本性质及敛散性的判别法,特殊的常数项级数求和;幂级数的收敛半径与收敛区间,函数展开成幂级数,幂级数的和函数;函数的傅里叶级数。 | 常数项级数的性质;幂级数的收敛半径与收敛区间;函数展开成幂级数;幂级数的和函数及特殊常数项级数的和。 | |
常微分方程 | 一阶微分方程的解法(特别是一阶线性微分方程的解法);二阶常系数线性微分方程的解法。 | 一阶微分方程及其解法;可降阶的高阶微分方程及其解法;二阶常系数线性微分方程解的结构与解法。 | 一阶常微分方程的解法;利用微分方程解决实际问题。 |
同学们如对上述某些知识点有疑问,可自行翻阅《2013全国硕士研究生入学统一考试数学考试大纲导读》,结合相关例题和练习题来加深理解掌握。
最后预祝同学们考研成功!
标签:数学
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。