您当前所在位置:首页 > 考研 > 考研辅导 > 数学

2014考研线代注意知识点的衔接

编辑:sx_wangxd

2013-10-14

2014年考研即将要开始了,精品学习网为各位考生总结了“2014考研线代注意知识点的衔接”,通过高效的复习方法让考生在短时间内有一定的提高

2014考研线代注意知识点的衔接

 考研数学中的线性代数试题,从难易程度上其实要远低于高数,却依然困扰了很多考生。究其原因,我们就不得不从线性代数的学科特点及命题方向着手分析。线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变。而且线性代数的命题重点,除了对基础知识的注重外,还偏向于知识点的衔接与转换。考生在复习的时候要结合这两个方向进行有针对性的复习。


  举例来说,设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有r(B)≤n-r(A)即r(A)+r(B)≤n,进而可求矩阵A或B中的一些参数。

  再如,若A是n阶矩阵可以相似对角化,那么,用分块矩阵处理P-1AP=∧可知A有n个线性无关的特征向量,P就是由A的线性无关的特征向量所构成,再由特征向量与基础解系间的联系可知此时若λi是ni重特征值,则齐次方程组(λiE-A)x=0的基础解系由ni个解向量组成,进而可知秩 r(λiE-A)=n-ni,那么,如果A不能相似对角化,则A的特征值必有重根且有特征值λi使秩r(λiE-A)

  又比如,对于n阶行列式我们知道:若|A|=0,则Ax=0必有非零解,而Ax=b没有惟一解(可能有无穷多解,也可能无解),而当|A|≠0 时,可用克莱姆法则求Ax=b的惟一解;可用|A|证明矩阵A是否可逆,并在可逆时通过伴随矩阵来求A-1;对于n个n维向量α1,α2,……αn可以利用行列式|A|=|α1α2……αn|是否为零来判断向量组的线性相关性;矩阵A的秩r(A)是用A中非零子式的最高阶数来定义的,若r(A)

  凡此种种,正是因为线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。复习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。

  最后,希望考生在复习过程中能给掌握技巧,拿下线性代数,早日取得考研成功



以上就是小编为你整理的“2014考研线代注意知识点的衔接”查看更多考研辅导信息请点击关注>>精品学习网>>考研>>考研辅导


标签:数学

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。