编辑:sx_weizc
2012-12-06
精品学习网为大家准备了考试的具体内容,希望可以给考生提供帮助
MBA联考数学学习攻略之找出解题思路
很多同学做题的困难都在于找不到思路。但我觉得,在掌握基本概念和基本方法之后,多数题都容易找到思路,因为MBA数学主要考基本方法。我只提几条建议:
1、把文字材料翻译成数学语言。数学的语言是方程、等式或不等式,把题目中出现的每个变量都用X,Y,Z等未知数代替,再从题目中找出这些未知数之间的关系。多数初等数学题都变成了解线性方程。
2、联想。对题目中出现的式子要展开联想,搜索记忆库中的导数、积分、数列等等中的公式,看它与哪个公式“模样”比较象,就朝哪个方向去思考。
3、简化。题目中的式子可能很复杂,我们可以把相同的东西用一个新的变量代替,复杂式子中的简单关系就显现出来了。
4、搭出思维的框架。就象写文章一样,具体内容还没想全,但头脑中已经有提纲。比如已知等差数列的第二项和第七项,求数列第101项到第200项的和。在具体求之前,头脑中就要先有解题的框架: 设数列首项a1和公差d为未知数—》列出两个方程—》解出a1,d—》由数列通项公式计算前N项和公式—》计算S100和S200—》S200-S100得出答案。这样思路清晰,能提高解题速度。
此外,还可以学习一些通用解法。通用解法可以解决相同类型的所有题目,无须再费时间思考。比如线代中的线性方程解法、高数中复合函数的二阶导数、隐函数的偏导数、概率中的数学期望和方差等,都是通用解法,答题的速度和准确性依赖于自己的计算能力,虽然计算复杂,但不用花时间思考。我也总结过不少通用解法,比较典型的是:
已知数列通项公式A(N),求数列的前N项和S(N)。
这个问题等价于求S(N)的通项公式,而S(N)=S(N-1)+A(N),这就成为递推数列的问题。
解法是寻找一个数列B(N),
使S(N)+B(N)=S(N-1)+B(N-1)
从而S(N)=A(1)+B(1)-B(N)
猜想B(N)的方法:把A(N)当作函数求积分,对得出的函数形式设待定系数,利用B(N)-B(N-1)=-A(N)求出待定系数。
例题:求S(N)=2+2*2^2+3*2^3+...+N*2^N
解:S(N)=S(N-1)+N*2^N
N*2^N积分得(N*LN2-1)*2^N/(LN2)^2
因此设B(N)=(PN+Q)*2^N
则 (PN+Q)*2^N-[P(N-1)+Q)*2^(N-1)=-N*2^N
(P*N+P+Q)/2*2^N=-N*2^N
因为上式是恒等式,所以P=-2,Q=2
B(N)=(-2N+2)*2^N
A(1)=2,B(1)=0
因此:S(N)=A(1)+B(1)-B(N)
=(2N-2)*2^N+2
对于求集合元素个数的问题,也有通用解法。比如三个相交的集合,可以先画出三个相交的圆圈,分别作为集合A、B、C,A在上,B在左下,C在右下。则A、B、C都被分为四部分,一共分为7块。从最上开始,沿逆时针方向将周围一圈设为X1、X2。。。X6,中间为X7,AUBUC的补集设为X8。那么题目中给出的任何条件都可以化成关于这八个未知数的方程组,然后变成解线性方程组的问题。如果不用这种方法,题目中的A与B的交集并上C、A与B的差交C等变化万千的条件容易把人搅得头晕脑涨。
与通用解法相对应的是特殊解法。特殊解法方法巧妙,计算简便,可以大大提高解题速度。但掌握特殊解法需要靠大量的练习、总结、积累。如求函数f(x)=x^2(1-x)在[0,1]上的最大值,可利用几何平均数小于算术平均数的性质,直接得出:
f(x)= x^2(1-x)=4*x/2*x/2*(1-x)<=4*[(x/2+x/2+1-x)/3]^3=4/27,等号在x/2=1-x,即x=2/3时成立。从而最大值为4/27。无须求导数、驻点再代入原式计算。
相关推荐:
标签:工商管理硕士
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。