精品学习网小编为考生搜集整理了:2013经济师中级经济基础知识辅导:数值型数据的整理与显示等信息,祝愿广大考生取得满意的成绩。
第二十三章 统计数据的整理与显示
数值型数据的整理与显示
(一)数据的分组
分组的方法
分类方法 定义 适用范围
单变量值分组 把每一个变量值作为一组 通常只适合于离散变量且变量值较少的情况
组距分组 将全部变量值依次划分为若干个区间,并将这一区间的变量值作为一组 连续变量或变量值较多的情况
采用组距分组的步骤
步骤 说明
第一步,确定分组组数 确定分组组数的要求是:(1)划分的组数,既不应太多也不应太少;(2)组数的确定,要尽量保证组间资料的差异性与组内资料的同质性;(3)采用的分组办法,要能够充分显示客观现象本身存在的状态。
关于统计分组组数问题,斯特基给出的计算公式为:(了解即可)
第二步,对原始资料进行排序
第三步,求极差 将最大的观察值与最小的观察值相减便得到极差
第四步,确定各组组距 在实行等距分组的情况下,组距的确定办法为:最好把组距取成接近于能被5除尽的一个数。
掌握:组距与组数成反比关系,组数越多,组距越小,组数越少,组距越大。
组距是每组观察值的最大差,即每组的上限值与下限值之间的差。
组距=某组的上限值-该组的下限值
第五步,确定组限 组限是组与组之间的界限。组限有上限与下限之分;上限与下限的差值称为组距;上限值与下限值的平均数称为组中值
确定组限时应注意:(1)第一组的下限值应比最小的观察值小一点,最后一组的上限值应比最大的观察值大一点;(2)特别需要或不得已的情况除外,最好不要使用开口组;(3)组限应取得美观些,按数字偏好,组限值应能被5除尽,且一般要用整数表示。
第六步,确定各组观察值出现的频数 采用组距分组时,需要遵循“不重不漏”的原则。
为解决“不重”的问题,统计分组时习惯上规定“上组限不在内”,即当相邻两组的上下限重叠时,恰好等于某一组上限的观察值不算在本组内,而计算在下一组内。
第七步,制作频数分布表
【例题1?单选题】上限值与下限值的平均数称为( )。
A.组中值
B.组平均数
C.组距
D.组数
『正确答案』A
【例题2?单选题】(2006年、2008年)在对数据实行等距分组的情况下,组距与组数的关系是( )。
A.无任何关系
B.反比关系
C.正比关系
D.组距总是组数的5倍
『正确答案』B
【例题3?单选题】(2007年)对一组数据进行分组,各组的组限依次是“10~20”、“20~30”、“30~40”、“40~50”、“50~60”、“60~70”。在以上这组数据中,50这一数值( )。
A.由于恰好等于组限,不需要分在某一组中
B.分在“50~60”一组中
C.分在“40~50”一组中
D.分在“40~50”或“50~60”任意一组中都可以
『正确答案』B
(二)数值型数据的图示——直方图、折线图
1.直方图 用矩形的宽度和高度来表示频数分布的图形
在直方图中,我们实际上用矩形的面积表示各组的频数分布。
直方图与条形图的区别:
(1)条形图是用条形的长度(横置时)表示各类别频数的多少,其宽度(表示类别)则是固定的;直方图是用面积表示各组频数的多少,矩形的高度表示每一组的频数或百分比,宽度则表示各组的组距,因此其高度与宽度均有意义;
(2)直方图的各矩形通常是连续排列,而条形图则是分开排列。
2.折线图 也称频数多边形图,它是在直方图的基础上,把直方图顶部的中点(即组中值)用直线连接起来,再把原来的直方图抹掉就是折线图。
数据的整理与显示总结
数据类型 数据的整理 数据的显示
分类数据 频数、比例、比率、百分比 条形图、圆形图
顺序数据 频数、比例、比率、百分比、累积频数、累积频率(百分比) 条形图、圆形图、累积分布图
数值型数据 频数、比例、比率、百分比、累积频数、累积频率(百分比)、分组(单变量分组、组距分组) 条形图、圆形图、累积分布图、直方图、折线图
【例题1?多选题】(2004年)2001年底,我国共有博物馆1458个,其中综合性博物馆769个,历史类博物馆521个,艺术类博物馆57个,自然科技类博物馆19个,其他类型博物馆92个。这一构成应通过绘制( )来显示
A.条形图
B.累积频数分布图
C.圆形图
D.直方图
E.折线图
『正确答案』AC
【例题2?单选题】组距分组是( )的整理方法。
A.分类数据
B.顺序数据
C.数值型数据
D.离散变量
『正确答案』C