编辑:jz_fuzz
2015-04-09
奥数的学习并没有我们想象的那么难,只要用心我们还是可以把奥数学习好的。我们一起来看一下这篇最新初三奥数因式分解知识点精选吧。
知识点总结
一、因式分解的概念:
多项式的因式分解,就是把一个多项式化为几个整式的积。分解因式要进行到每一个因式都不能再分解为止。
二、分解因式的常用方法有:
1.提公因式法;2公式法;3.十字相乘法;4.分组分解法;5.求根公式法。
三、因式分解的步骤及注意事项:
1.一般步骤:“一提”:先考虑是否有公因式,如果有公因式,应先提公因式;“二套”:再考虑能否运用公式法分解因式,一般的根据多项式的项数选择公式,二项式考虑用平方差公式,三项式考虑用完全平方公式或十字相乘法,更多项的多项式,应分组分解。
2.分解因式需要注意事项:分解因式必须彻底,应进行到每个因式都不能在分解为止;分解因式要注意,是在有理数范围内,还是在实数范围内。
四、分解因式的应用:
1.使一些较复杂的计算简便;2.求一些无法直接求解的代数式的值;3.判断多项式的整除性质;4.与几何中三角形的三边关系结合解决一些综合性问题。
常见考法
实际生活中,人们为了解决问题常常遇到某些复杂的计算问题,如果根据题目的特点,运用分解因式将式子变形,会简化运算量,提高准确率,所以灵活应用各种方法分解因式是历届考试的重点。题型一般是小型综合题,难度一般,解题规律明显。
误区提醒
给出三个整式a2,b2和2ab.
(1)当a=3,b=4时,求a2+b2+2ab的值;
(2)在上面的三个整式中任意选择两个整式进行加法或减法运算,使所得的多项式能够因式分解。请写出你所选的式子及因式分解的过程。
【解析】(1) 当a=3,b=4时, a2+b2+2ab==49.
(2) 答案不唯一,例如,
若选a2,b2,则a2-b2=(a+b)(a-b)。
若选a2,2ab,则a2±2ab=a(a±2b)。
现在是不是觉得奥数很简单啊,希望这篇最新初三奥数因式分解知识点精选可以帮助到你。
相关推荐
标签:初三奥数
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。