编辑:sx_zhanglz
2016-11-03
同学们在数学竞赛中是不是经常遇见关于初一年级数学竞赛考前练习题的内容,重要性想必都不用和大家说了吧,这篇文章希望大家可以好好运用。
A级 基础题
1.(2013年浙江湖州)计算6x3•x2的结果是( )
A.6x B.6x5 C.6x6 D.6x9
2.(2013年湖南湘西州)下列运算正确的是( )
A.a2-a4=a8 B.(x-2)(x-3)=x2-6
C.(x-2)2=x2-4 D.2a+3a=5a
3.(2012年广东汕头)下列运算正确的是( )
A.a+a=a2 B.(-a3)2=a5 C.3a•a2=a3 D.(2a)2=2a2
4.(2013年山东济宁)如果整式xn-2-5x+2是关于x的三次三项式,那么n=( )
A.3 B.4 C.5 D.6
5.(2012年浙江杭州)下列计算正确的是( )
A.(-p2q)3=-p5q3 B.(12a2b3c)÷(6ab2)=2ab
C.3m2÷(3m-1)=m-3m2 D.(x2-4x)x-1=x-4
6.(2013年四川凉山州)如果单项式-xa+1y3与12ybx2是同类项,那么a,b的值分别为( )
A.a=2,b=3 B.a=1,b=2 C.a=1,b=3 D.a=2,b=2
7.(2012年陕西)计算(-5a3)2的结果是( )
A.-10a5 B.10a6 C.-25a5 D.25a6
8.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是( )
A.-5x-1 B.5x+1 C.13x-1 D.13x+1
9.化简:(a+b)2+a(a-2b)
参考答案
1.B 2.D 3.D 4.C 5.D 6.C 7.D 8.A
9.解:原式=a2+2ab+b2+a2-2ab=2a2+b2.
B级 中等题
10.若一多项式除以2x2-3,得到的商式为7x-4,余式为-5x+2,则此多项式为( )
A.14x3-8x2-26x+14 B.14x3-8x2-26x-10
C.-10x3+4x2-8x-10 D.-10x3+4x2+22x-10
11.(2011年安徽芜湖)如图132,从边长为(a+4) cm的正方形纸片中剪去一个边长为(a+1) cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )
A.(2a2+5a) cm2 B.(3a+15) cm2 C.(6a+9) cm2 D.(6a+15) cm2
12.若关于x的多项式-5x3-(2m-1)x2+(2-3n)x-1不含二次项和一次项,求m,n的值.
13.(2012年山西)先化简,再求值:(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中x=-3.
参考答案
10.A 11.D
12.解:2m-1=0,2-3n=0.
解得m=12,n=23.
13.解:原式=4x2-9-4x2+4x+x2-4x+4=x2-5.
当x=-3时,原式=(-3)2-5=3-5=-2.
C级 拔尖题
14.利民商店出售一种原价为a的商品,有如下几种方案:
(1)先提价10%,再降价10%;(2)先降价10%,再提价10%;(3)先提价20%,再降价20%.
问用这三种方案调价的结果是否一样?最后是不是都恢复了原价?
参考答案
14.解:方案(1)的调价结果为:
(1+10%)(1-10%)a=0.99a;
方案(2)的调价结果为:
(1-10%)(1+10%)a=0.99a;
方案(3)的调价结果为:
(1+20%)(1-20%)a=0.96a.
由此可以得到这三种方案的调价结果是不一样的.最后都没有恢复原价.
奥数的学习可以不断提高同学的数学学习能力,只有不断练习才会有进步,初一年级数学竞赛考前练习题已经为大家整理出来,希望对大家学习有帮助!点击【初中数学竞赛试题】栏目~
标签:初中数学竞赛试题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。