编辑:jz_fuzz
2015-04-18
奥数与我们的生活息息相关,奥数将生活与数学紧密联系,因此,精品小编为大家精心准备了这篇精选初中奥数代数式求值常用方法希望可以帮助到大家!
求代数式的值时,可以直接代入进行计算,也可以先化简再求值,往往后者比前者更为简便.根据已知条件求代数式的值,需要我们正确把握代数式的整体特征,灵活选用适当的方法加以解答.现举例说明如下.
一、直接代入求值
例1当x=-2,y=1时,代数式x2-xy的值为.
解:当x=-2,y=1时,x2-xy=(-2)2-(-2)×1=6.所以,本题应该填:6.
说明:所给代数式中没有同类项时,往往直接将字母的值代入其中进行求值.
二、先化简,再代入求值
例2计算:5m2-[3m-(2m-3)+5m2],其中m=-3.
解:方法一:原式=5m2-[3m-2m+3+5m2]
=5m2-(m+3+5m2)
=5m2-m-3-5m2
=(5m2-5m2)-m-3
=-m-3.
当m=-3时,原式= -m-3=3-3=0.
方法二:原式=5m2-3m+(2m-3)-5m2
=(5m2-5m2)-3m+(2m-3)
=-3m+2m-3
= -m-3.
当m=-3时,原式= -m-3=3-3=0.
说明:求代数式的值时,如果代数式可以化简,先化简再求值往往比较简捷.在运用去括号法则时,可以由内向外去括号,也可以由外向内去括号,特别要注意去括号时正负号的变化.去括号的过程中,如果遇到同类项,应该先合并同类项.
三、应用整体思想求代数式的值
例3已知:n=-1.求代数式2(n2-2n+1)-(n2-2n+1)+3(n2-2n+1)的值.
分析:仔细观察所给代数式的整体特征,不难发现各项都有n2-2n+1,因此,我们先把(n2-2n+1)看成一个整体进行合并.
解:原式=(2-1+3)(n2-2n+1)
=4(n2-2n+1).
当n=-1时,n2-2n+1=(-1)2-2×(-1)+1=4,所以,原式=4(n2-2n+1)=4×4=16.
说明:对多项式中的同类项合并时,要善于观察问题的整体特征,灵活选用适当的方法进行解答.
例4已知:a-b=-3,b-c=2.求代数式(a-b)2+2(b-c)2-3(a-c)2的值.
分析:要求代数式(a-b)2+2(b-c)2-3(a-c)2的值,条件中没有分别给出a、b、c的值,而是给出a-b与b-c的值,因此解决本题的关键在于要知道a-c的值.我们可以将a-b与b-c进行合并,求得a-c的值.
解:因为a-b=-3,b-c=2,
所以(a-b)+(b-c)=-1,即a-c=-1.
当a-b=-3,b-c=2,a-c=-1时,
(a-b)2+2(b-c)2-3(a-c)2=(-3)2+2×22-3×(-1)2
=9+8-3×1=14.
说明:本题运用整体思想将两个代数式中的同类项进行合并,使问题巧妙得解.
例5已知:代数式3a+4b的值为3.求代数式2(2a+b)+5(a+2b)的值.
解:原式=4a+2b+5a+10b
=9a+12b
=3(3a+4b).
所以,当3a+4b=3时,原式=3(3a+4b)=9.
说明:本题从代数式运算的结果中发现所给条件的整体特征与结论之间的内在联系,然后应用整体的思想加以解答.这种解题策略,同学们一定要好好地掌握!
这篇精选初中奥数代数式求值常用方法就和大家分享到这里了,希望大家都能喜欢上奥数。
相关推荐
标签:代数式
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。