编辑:jz_fuzz
2015-04-19
学习数学的思维需要靠做题来锻炼,所以多做题是对我们有益处的哦!这篇初三奥数分式方程和无理方程学习资料是精品小编特地为小朋友们准备的,希望有助于同学们奥数能力的提升。
知识点总结
一。分式方程、无理方程的相关概念:
1.分式方程:分母中含有未知数的方程叫做分式方程。
2.无理方程:根号内含有未知数的方程。(无理方程又叫根式方程)
3.有理方程:整式方程与分式方程的统称。
二。分式方程与无理方程的解法 :
1.去分母法:
用去分母法解分式方程的一般步骤是:
①在方程的两边都乘以最简公分母,约去分母,化成整式方程;
②解这个整式方程;
③把整式方程的根代入最简公分母,看结果是不是零,使最简公分母不为零的根是原方程的根,使最简公分母为零的根是增根,必须舍去。
在上述步骤中,去分母是关键,验根只需代入最简公分母。
2.换元法:
用换元法解分式方程的一般步骤是:
②换元:换元的目的就是把分式方程转化成整式方程,要注意整体代换的思想;
③三解:解这个分式方程,将得出来的解代入换的元中再求解;
④四验:把求出来的解代入各分式的最简公分母检验,若结果是零,则是原方程的增根,必须舍去;若使最简公分母不为零,则是原方程的根。
解无理方程也大多利用换元法,换元的目的是将无理方程转化成有理方程。
三。增根问题:
1.增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的增根。
2.验根:因为解分式方程可能出现增根,所以解分式方程必须验根。
3.增根的特点:增根是原分式方程转化为整式方程的根,增根必定使各分式的最简公分母为0。
解分式方程的思想就是转化,即把分式方程整式方程。
常见考法
(1)考查分式方程的概念、分式方程解和增根的机会比较少,通常与其他知识综合起来命题,题型以选择、填空为主;
(2)分式方程的解法,是考查的重点。
误区提醒
(1)去分母时漏乘整数项;
(2)去分母时弄错符号;
(3)换元出错;
(4)忘记验根。
怎么样?是不是也没有那么难呢?希望大家可以通过这篇初三奥数分式方程和无理方程学习资料喜欢上奥数。
相关推荐
标签:方程和不等式
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。