精选初中奥数计数类归纳法例题练习

编辑:jz_fuzz

2015-04-23

奥数与我们的生活息息相关,奥数将生活与数学紧密联系,因此,精品小编为大家精心准备了这篇精选初中奥数计数类归纳法例题练习希望可以帮助到大家!

10个三角形最多将平面分成几个部分?

解:设n个三角形最多将平面分成an个部分。

n=1时,a1=2;

n=2时,第二个三角形的每一条边与第一个三角形最多有2个交点,三条边与第一个三角形最多有2×3=6(个)交点。这6个交点将第二个三角形的周边分成了6段,这6段中的每一段都将原来的每一个部分分成2个部分,从而平面也增加了6个部分,即a2=2+2×3。

n=3时,第三个三角形与前面两个三角形最多有4×3=12(个)交点,从而平面也增加了12个部分,即:

a3=2+2×3+4×3。

……

一般地,第n个三角形与前面(n-1)个三角形最多有2(n-1)×3个交点,从而平面也增加2(n-1)×3个部分,故an=2+2×3+4×3+…+2(n-1)×3

=2+[2+4+…+2(n-1)]×3

=2+3n(n-1)=3n2-3n+2。

特别地,当n=10时,a10=3×102+3×10+2=272,即10个三角形最多把平面分成272个部分。

这篇精选初中奥数计数类归纳法例题练习就和大家分享到这里了,希望大家都能喜欢上奥数。

相关推荐

奥数计数问题培训讲座

初中奥数计数问题练习精编

标签:计数

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。