精选九年级奥数计算练习题

编辑:sx_chenjp

2015-10-23

学习奥数的作用在于对同学们的长远智力水平的提高,而不是单纯为了成绩。小编为大家准备了这篇精选九年级奥数计算练习题以供大家参考。

1某建筑物地基是一个边长为30米的正六边形,要环绕地基开辟绿化带,是绿化带的面积和地基面积相等,求绿化带的边长多少?(列方程解决)

答案 绿化带的边长为x

x^2/30^2=2

x=30√2=42.43

绿化带的边长是42.43米

问题2 .一个三角形的三条边分别是13,14,15,则这个三角形的面积等于多少?

答案 由海伦公式得:p=(13+14+15)/2=21

S=√p(p-a)(p-b)(p-c)=√[21(21-13)(21-14)(21-15)]=84

问题3 .在四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,则四边形ABCD的面积是多少?

答案 3、AC=5,又得到三角形ADC为直角三角形,所以面积为:3*4/2+5*12/2=36

问题4 .问X为何值时,方程9x^2 +23x-2的值是两个连续偶数的乘积

答案 x = {-23 +- [601 + 144k(k+1) ]^(1/2)} / 18

其中 k = 0,1,2,3,4,......

特别是 k=4时

x = (-23 +- 59)/18 = 2 或者 -41/9

----------------------------------------

问X为何值时,方程9x^2 +23x-2的值是两个连续偶数的乘积

解: 方程9x^2 +23x-2的值是两个连续偶数的乘积, 所以方程式 9x^2 +23x-2 = 0 有两个连续偶数解

假设这两个偶数是 2k 和 2(k+1), k>=0, k为整数

9x^2 + 23x - 2 = 2k*2(k+1)

9x^2 + 23x - (2 + 2k*2(k+1) ) = 0

判别式

23^2 + 4*9*(2 + 2k*2(k+1) )

= 23^2 + 72(1 + 2k(k+1) )

= 23^2 + 72 + 144k(k+1)

= 601 + 144k(k+1) >= 0

k^2 + k + 601/144 >=0

(k + 1/2)^2 - 1/4 + 601/144 >=0

601/144 - 1/4 〉0

所以 k 为 任意整数 时 601 + 144k(k+1) >= 0 都成立!

所以 x = {-23 +- [601 + 144k(k+1) ]^(1/2)} / 18

其中 k = 0,1,2,3,4,......

特别是 k=4时

以上就是精品学习网为大家整理的精选九年级奥数计算练习题,怎么样,大家还满意吗?希望对大家的学习有所帮助,同时也祝大家学习进步,考试顺利!

相关链接:

2015初中奥数图形计算公式大全

精选初中奥数计算练习题

标签:计算

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。