初中奥数数论基础约数与倍数知识点讲解

编辑:

2014-08-09

2、(分解质因数法)求1001和308的最大公约数是多少?

解:1001=7×11×13(这个质分解常用到)  ,  308=7×11×4

所以最大公约数是7×11=77

在这种方法中,先将数进行质分解,而后取它们“所有共有的质因数之积”便是最大公约数。

3、(辗转相除法)用辗转相除法求4811和1981的最大公约数。

解:∵4811=2×1981+849,

1981=2×849+283,

849=3×283,

∴(4811,1981)=283。

补充说明:如果要求三个或更多的数的最大公约数,可以先求其中任意两个数的最大公约数,再求这个公约数与另外一个数的最大公约数,这样求下去,直至求得最后结果。

(5)约数个数公式

一个合数的约数个数,等于它的质因数分解式中每个质因数的个数(即指数)加1的连乘的积。

例如:求240的约数的个数。

解:∵240=24×31×51,

∴240的约数的个数是

(4+1)×(1+1)×(1+1)=20,

∴240有20个约数。

由精品小编为大家提供的初中奥数数论基础约数与倍数知识点讲解就到这里了,愿大家都能学好奥数。

标签:数论

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。