初中奥数数论数的特征及习题

编辑:sx_chenjp

2015-10-19

奥数的学习可以不断提高同学的数学学习能力,只有不断练习才会有进步。精品学习网为大家整理了初中奥数数论数的特征及习题,希望大家阅读愉快。

①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.

②能被5整除的数的特征:个位是0或5。突破口

③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。

判断能被3(或9)整除的数还可以用“弃3(或9)法”:

例如:8351746能被9整除么?

解:8+1=9,3+6=9,5+4=9,在数字中只剩7,7不是9的倍数,所以8351746不能被9整除。

④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。

⑤能被8(或125)整除的数的特征:末三位数能被8(或125)整除。

⑥能被11整除的数的特征:这个整数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是11的倍数。

⑦能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除,依此反复检验。

例如:判断3546725能否被13整除?

解:把3546725分为3546和725两个数.因为3546-725=2821.再把2821分为2和821两个数,因为821—2=819,又13|819,所以13|2821,进而13|3546725.

上述办法也可以用来判断余数和末位数;

对于其他的数,可以将其分解成上述几个互质的数的乘积,再逐个考虑。

以上就是精品学习网为大家整理的初中奥数数论数的特征及习题,怎么样,大家还满意吗?希望对大家的学习有所帮助,同时也祝大家学习进步,考试顺利!

相关链接:

初中奥数数论练习题:公因数和公倍数

初中奥数数论整除特征基础知识总结

标签:数论

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。