初中奥数数论约数与倍数知识点

编辑:sx_chenjp

2015-10-19

奥数的学习可以不断提高同学的数学学习能力,只有不断练习才会有进步。精品学习网为大家整理了初中奥数数论约数与倍数知识点,希望大家阅读愉快。

(1)公约数和最大公约数

几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。

例如:4是12和16的最大公约数,可记做:(12 ,16)=4

(2)公倍数和最小公倍数

几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

例如:36是12和18的最小公倍数,记作[12,18]=36。

(3)最大公约数和最小公倍数的关系

如果用a和b表示两个自然数

1、那么这两个自然数的最大公约数与最小公倍数关系是:

(a,b)×[a,b]=a×b。

(多用于求最小公倍数)

2、(a,b) ≤ a ,b ≤ [a,b]

3、[a,b]是(a,b)的倍数,(a,b)是[a,b]的约数

4、(a,b)是a+b 和a-b 的约数,也是(a,b)+[a,b]和(a,b)-[a,b]的约数

(4)求最大公约数的方法很多,主要推荐:短除法、分解质因数法、辗转相除法。

例如:1、(短除法)用一个数去除30、60、75,都能整除,这个数最大是多少?

解:∵

(30,60,75)=5×3=15

这个数最大是15。

2、(分解质因数法)求1001和308的最大公约数是多少?

解:1001=7×11×13(这个质分解常用到)  ,  308=7×11×4

所以最大公约数是7×11=77

在这种方法中,先将数进行质分解,而后取它们“所有共有的质因数之积”便是最大公约数。

3、(辗转相除法)用辗转相除法求4811和1981的最大公约数。

解:∵4811=2×1981+849,

1981=2×849+283,

849=3×283,

∴(4811,1981)=283。

补充说明:如果要求三个或更多的数的最大公约数,可以先求其中任意两个数的最大公约数,再求这个公约数与另外一个数的最大公约数,这样求下去,直至求得最后结果。

(5)约数个数公式

一个合数的约数个数,等于它的质因数分解式中每个质因数的个数(即指数)加1的连乘的积。

例如:求240的约数的个数。

解:∵240=24×31×51,

∴240的约数的个数是

(4+1)×(1+1)×(1+1)=20,

∴240有20个约数。

以上就是精品学习网为大家整理的初中奥数数论约数与倍数知识点,怎么样,大家还满意吗?希望对大家的学习有所帮助,同时也祝大家学习进步,考试顺利!

相关链接:

初中奥数数论数的特征及习题

初中奥数数论反证法知识点

标签:数论

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。