编辑:jz_fuzz
2015-04-17
奥数对激发学生学习数学的兴趣,发现优秀的数学特长生,推动中学数学教学改革等方面都起了很大的作用。这篇精选九年级奥数应用题习题,欢迎同学们阅览!
【题目1】B地在A,C两地之间.甲从B地到A地去,出发后1小时,乙从B地出发到C地,乙出发后1小时,丙突然想起要通知甲、乙一件重要的事情,于是从B地出发骑车去追赶甲和乙.已知甲和乙的速度相等,丙的速度是甲、乙速度的3倍,为使丙从B地出发到最终赶回B地所用的时间最少,丙应当先追甲再返回追乙,还是先追乙再返回追甲?
【解答】如果先追乙然后返回,时间是1÷(3-1)×2=1小时,再追甲后返回,时间是3÷(3-1)×2=3小时,共用去3+1=4小时,如果先追甲返回,时间是2÷(3-1)×2=2小时,再追乙后返回,时间是3÷(3-1)×2=3小时,共用去2+3=5小时,先追乙时间最少。故先追更后出发的。
【题目2】环形跑道周长是500米,甲、乙两人从起点按顺时针方向同时出发.甲每分钟跑120米,乙每分钟跑100米,两人都是每跑200米停下来休息1分钟,那么甲第一次追上乙需要多少分钟?
【解答】
解法一:因为行完之后,甲比乙多行500米,就说明多休息500÷200=2……100,即2次。甲追乙的路程是500+100×2=700米,要追700米,甲需要走700÷(120-100)=35分,甲行35分钟需要休息35×120÷200-1=20分,所以共需35+20=55分。
解法二:跑停一次时间比:甲是200:120=5:3=15:9,乙是200:100=2:1=16:8,在24分钟里甲跑15分钟,乙跑16分钟,甲比乙多跑120×15-100×16=200米,500-200×2=100米,100÷(120-20)=5分钟,甲跑5分钟只需要休息两分钟,共用时间24×2+5+2=55分钟
【题目3】甲、乙两人同时从A地出发到B地,经过3小时,甲先到B地,乙还要1小时到达B地,此时甲、乙共行了35千米.求AB两地的路程.
【解答】甲行3小时的路程,乙行3+1=4小时,说明甲乙的速度比是4:3。AB两地的距离就是甲行的。所以是35÷(4+3)×4=20千米。
【题目4】快、慢两辆汽车同时从甲地开往乙地,快车每小时比慢车多行18千米,快车行驶4小时到达乙地后,立即返回甲地,在离乙地42千米的地方与慢车相遇,求甲、乙两地距离.
【解答】
解法一:快车到达乙地时,比慢车多行18×4=72千米。继续行至相遇,快车行了42千米,慢车行了72-42=30千米。快车每小时行18÷(42-30)×42=63千米。甲乙两地的距离是63×4=252千米。
解法二:快车到达乙地时,比慢车多行18×4=72千米。继续行至相遇,快车行了42千米,慢车行了72-42=30千米。快车慢车的速度比是42:30=7:5,甲乙两地的距离是72÷(7-5)×7=252千米。
解法三:相遇时,快车比慢车多行42×2=84千米,用去84÷18=14/3小时。快车每小时行42÷(14/3-4)=63千米。甲乙两地之间的距离是63×4=252千米。
解法四:快车行到乙地时,快车比慢车多行18×4=72千米。相遇时,快车比慢车多行42×2=84千米。快车后来行的42千米相当于甲乙两地距离的84÷72-1=1/6,甲乙两地的距离是42÷1/6=252千米。
以上由精品学习网小编整理的精选九年级奥数应用题习题,供同学们学习参考!
相关推荐
标签:应用题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。