编辑:jz_fuzz
2015-04-17
学习数学的思维需要靠做题来锻炼,所以多做题是对我们有益处的哦!这篇2015初一奥数应用题行程专题是精品小编特地为小朋友们准备的,希望有助于同学们奥数能力的提升。
【题目1】甲乙两地,如果去时的速度提高25%,可比原定的时间提前6分钟到达,如果每小时少行10千米,则将多用1/3的时间才能到达,问两地的距离。
【解答】原定时间是6÷25%+6=30分钟,即1/2小时。原定速度是10÷1/3+10=40千米,则两地之间的距离是40×1/2=20千米。
【题2】小丁骑自行车去小周家,先以12千米/小时的速度下山,然后又以9千米/小时的速度走过一段平路,到小周家共用了55分钟;后来时他用8千米/小时的速度通过平路,又以4千米/小时的速度上山回到了家,共用了90分钟,求小周家和小丁家的距离
【解答】去时速度坡路12平路9,返回坡路4平路8,如果返回坡路4×3=12平路8×3=24用去90÷3=30分钟。行平路速度9千米/时比24千米/时多用(55-30)÷60=5/12小时,所以平路的长度是5/12÷(1/9-1/24)=6千米,坡路就是(90/60-6/8)×4=3千米,两家相距6+3=9千米。
【题目3】甲乙丙三人同时从同一地点出发,沿一条线路追前面的小明,他们三人分别用9分,15分,20分别追上小明,已知甲每小时行24千米,已知甲每小时行24千米,乙每小时行20千米,丙每小时行多少千米?
【解答】小明分别与甲乙丙的速度差的比是1/9:1/15:1/20=20:12:9,很容易知道每份是(24-20)÷(20-12)=0.5,乙丙相差0.5×(12-9)=1.5千米,所以丙的速度是20-1.5=18.5千米/小时。
【题目4】网友求助:有一个圆形的池子,ABC三人同时由池子边的某一地点出发,绕池子跑步。AB向同一方向跑,C在途中遇上A,然后经过4分钟又遇上B。A每分钟跑400米。B每分钟跑200米。C每分钟跑150米。池子的周长是多少米?
【解答】设周长是单位1,AC相遇用的时间是1÷(400+150)=1/550,BC相遇用的时间是1÷(200+150)=1/350,那么周长就是4÷(1/350-1/550)=3850米。
【题目5】A的速度为每小时行30千米,B的速度为每小时行20千米,A和B同时从甲地出发到乙地,他们先后到乙地后又返回甲地……,如此往返来回运动。已知A与B第二次迎面相遇与A第二次追上B的两点相距45千米,甲乙两地相距多少千米?
【解答】第一次迎面相遇共行2个单程,第二次迎面相遇共行4个单程,相遇点距离甲地3/5×4-2=2/5;第一次追上A比B多行2个单程,即A6B4个单程,第二次追上A12B8个单程,偶数个单程都在甲地追上。因此甲乙两地相距45÷2/5=112.5千米。
怎么样?是不是也没有那么难呢?希望大家可以通过这篇2015初一奥数应用题行程专题喜欢上奥数。
相关推荐
标签:应用题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。