编辑:
2014-05-31
3.5它们是怎样变过来的
教学目标:
1、知识目标:探索图形之间的变换关系(轴对称、平移、旋转及其组合)。
2、能力目标:①经历对具有旋转特征的图形进行观察、分析、动手操作和画图等过程,掌握画图技能。
②能够按要求作出简单平面图形旋转后的图形,并在此基础上达到巩固旋转的有关性质。
3、情感体验点:培养学生的观察能力和审美能力,激发学生学习数学的兴趣。
重点与难点:
重点:图形之间的变换关系(轴对称、平移、旋转及其组合);
难点:综合利用各种变换关系观察图形的形成。
疑点:基本图案不同,形成方式不同。
教学方法:
新授课在教师引导下,以学生的分组讨论、合作交流为主展开教学。
教学过程设计:
1、情境导入
播放自制图形形成的影片,如图3—5—1。
图3—5—1
2、充分利用本课时引入开放性的问题:“”图3—5—1由四部分组成,每部分都包括两个小“十”字,其中一部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其它方式吗?
问题本身为学生创设了一个探究图形之间变化关系的情景,图形虽十简单,但变换方式综合性强,可以让学生自由发挥,各抒已见,后由教师进行适当归纳小结:
(1) 整个图形可以看做是由一个“十”字组成部分通过连续七次平移前后的图形共同组成;
(2) 整个图形也可以看做是由左边的两个“十”字组成的部分通过三次放置形成的;
(3) 整个图形不定期可以看做把左边的两个“十”字组成的部分先通过平移一次形成左右四个“十”字组成的图形,然后绕图形中心旋转90度前后的图形共同组成;
(4) 整个图形还可以看做把左边的两个“十”字组成的部分通过二次轴对称形成的。
……(学生可能还有其他不同描述,教师应予以肯定)
3、通过上述问题的讨论,我们看到图形的平移、旋转,轴对称变换是图形变换中最基本的三种变换方式,它们是今后设计图案的主要手段。
4、利用“想一想”你能将图3—5—2的左图,通过平移或旋转得到右图吗?
图3—5—2
学生议论或动手操作会发现这是不可能的,教材意图十分明确,要告诉学生并不是所有图形都可以通过一次平移或旋转而得到的,从而要求我们今后分析图形之间的关系时,要充分利用它们各自的性质、特征正确判断和识别。那么上述图形能通过轴对称变换从左图变成右图吗?进一步让学生思考,从而得到结论是可能的。
5、例1 怎样将图3—5—3中的甲图变成乙图案?
图3—5—3
通过相对简单活泼的问题,让学生能运用图形变换的几种不同方式解答问题(先旋转再平移后等到或先平移后旋转也可以)
例2 怎样将图3—5—4中右边的图案变成左边的图案?
留给学生充足的时间讨论交流。
(师):哪位同学有好好方法,请告诉大家!
(生):以右图案的中心为旋转中心,将图案按逆时针方向旋转900 。
(生):以右图案的中心为旋转中心,将图案顺逆时针方向旋转2700 。
明确可以通过不同的办法达到同样的效果,激励学生动手动脑。
5、学习小结
(1)内容总结
两个图案前后变化彩用了哪些方法?(平移、旋转,轴对称)
(2)方法归纳
①了解并知道图案变化的一般方法。
②图案变化的方法很多,在生活中要养成多途径观察,思考问题的习惯。
6、目标检测
图3—5—5是由三个正三角形拼成的,它可以看做由其中一个三角形经过怎样的变换而得到?
图3—5—5
(二)延伸拓展
1、链接生活
链接一:奥运会的五环旗图案是大家熟悉的图案,请你根据所学知识分析它的形成。(用课本知识解释生活中的图形变换)
链接二:夏季是荷花盛开的季节,同学们都赞美过它出淤泥而不染的品质,很多同学曾画过荷花,请你用所学知识再画一朵荷花,看与以前有什么不同的感受(让学生进一步体会数学与生活的密切联系)
实践探索 :①实践活动列举实例归纳图形之间的变换关系(平移、旋转,轴对称及其组合)②巩固练习课本74页中的习题3.6
(三)板书设计
3.5它们是怎样变过来的
轴对称、平移、旋转的性质 例题
图形之间的变换关系
标签:初二数学教案
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。