您当前所在位置:首页 > 初中 > 初二 > 数学 > 初二数学课件

初二数学课件角的平分线的性质

编辑:sx_zhangwl

2017-11-13

编者按:精品学习网小编为大家收集了初二数学课件角的平分线的性质,供大家参考,希望对大家有所帮助!

我们为大家收集整理了关于角的平分线的性质,以方便大家参考。

角平分线的性质:

1.角平分线可以得到两个相等的角。

2.角平分线上的点到角两边的距离相等。

3.三角形的三条角平分线交于一点,称作三角形内心。三角形的内心到三角形三边的距离相等。

4.三角形一个角的平分线,这个角平分线其对边所成的两条线段与这个角的两邻边对应成比例。

第一部分

1.角平分线可以得到两个相等的角。

角平分线,顾名思义,就是将角平分的射线。

如右图,若射线AD是角CAB的角平分线,则角CAD等于角BAD。

第二部分

2.角平分线线上的点到角两边的距离相等。

如右上图,若射线AD是∠CAB的角平分线,求证:CD=BD

∵∠DCA=∠DBA

∠CAD=∠BAD

AD=AD

∴△ACD≌△ABD

∴CD=BD

第三部分

3.三角形的三条角平分线交于一点,称作三角形的内心。三角形的内心到三角形三边的距离相等。

这一条是第二条的引申,详细证明过程参照第二条和三角形内心。

第四部分

4.三角形一个角的平分线,这个角平分线其对边所成的两条线段与这个角的两邻边对应成比例。

如右下图,平面内任意一小于180度的∠MAN,AS平分∠MAN,直线BC分别交射线AM、AN、AS于B、C、D,求证:AB/BD=AC/CD:

作BE=BD交射线AS于E,如图1:

∵BE=BD,

∴∠BED=∠BDE,

∴∠AEB=∠ADC

又∵∠BAE=∠CAD,

∴△AEB∽△ADC,

∴AB/BE=AC/CD, 即AB/BD=AC/CD.

另外的情况,

如图2,直线BC交AS的反向延长线于D,如图3,直线BC交AN的反向延长线于C;

此时,仍有AB/BD=AC/CD

证法与图1类似

希望大家可以学会角的平分线的性质.想了解更多精彩内容,请关注我们的网站!

点击下载:初二数学课件角的平分线的性质.rar

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。