编辑:sx_bij
2013-06-25
一.单项选择题(本大题共10小题,每小题3分,共30分。把正确选项的字母填写在单项选择题答题表内)
单项选择题答题表
题号 1 2 3 4 5 6 7 8 9 10
答案
1、下列格式中,分式的个数有:
、 、 、 、 、 、
A.2个 B.3个 C.4个 D.5个
2、当分式 有意义时,字母x应满足:
A.x=0 B.x≠0 C.x=1 D.x≠1
3、如图,在直角梯形ABCD中AD∥BC,点E是边CD的中点,若AB=AD+BC,BE= ,则梯形ABCD的面积为:
A. B. C. D.25
4、甲、乙两人分别从两地同时出发,若相向而行,则a小时相遇;若同向而行,则b小时甲追上乙.那么甲的速度是乙的速度的:
A. 倍 B. 倍 C. 倍 D. 倍
5、如图,一次函数与反比例函数的图像相交于A、B两点,则图中使反比例函数的值小于一次函数的值的x的取值范围是:
A.x<-1 B.-12 C.x>2 D.x<-1,或0
6、正比例函数y=2kx与反比例函数y= (k≠0)在同一坐标系中的图象不可能是:
A. B. C. D.
7、如图,在平面直角坐标系中,以O(0,0),A(1,1),B(3,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是:
A.(4,1) B.(4,1) C.(-2,1) D.(2,-1)
8、放学以后,小丽和小宏从学校分手,分别沿东南方向和西南方向回家,若小丽和小宏行走的速度都是40米/分,小丽用15分钟到家,小宏用20分钟到家,小丽和小宏家的距离为:
A.600米 B.800米 C.1000米 D.不能确定
9、如图,把长方形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,那么,有下列说法: ①△EBD是等腰三角形,EB=ED ②折叠后∠ABE和∠CBD一定相等
③折叠后得到的图形是轴对称图形 ④△EBA和△EDC一定是全等三角形。其中正确的有:
A.1个 B.2个 C.3个 D.4个
10、如图,是在一次科技知识竞赛中,两组学生成绩统计表,通过计算可知两组的方差为 =172, =256。下列说法:①两组的平均数相同;②甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数>乙组成绩的众数;④两组成绩的中位数均为80,但成绩≥80的人数甲组比乙组多,从中位数来看,甲组成绩总体比乙组好;⑤成绩高于或等于90分的人数乙组比甲组多,高分段乙组成绩比甲组好。其中正确的共有:
A.2种 B.3种 C.4种 D.5种
第3题图 第5题图 第7题图 第9题图
二.填空题(本大题共10小题,每小题3分,共30分。把正确的答案直接填写在所需补充填空处下划线上)
11、若分式方程 =1有增根,则m的值为 。
12、已知y-2与x成反比例,且满足x=3时,y的值为1,则y与x的函数关系式是 。
13、小明用竹竿扎了一个长40cm,宽30cm的长方形框架,由于四边形容易变形,学习过三角形稳定性后,小明用一根竹竿做斜拉秆将四边形定形,则此斜拉秆需 cm。
14、如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD的中点,且AF⊥FE,若AD=3,AF=4,AB=6,则CE的长为 。
15、在平面直角坐标系中,函数y=-3 的图像不动,将x轴、y轴分别向下、向右平移2个单位,那么在新坐标系下抛物线的顶点坐标是 。
16、如图,把矩形ABCD沿EF折叠,使点C落在点A处,点D落在点G处,若∠CFE=60°,且DE=1,则边BC的长为 。
17、如图,在平行四边形ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于G、H,试判断下列结论:①ΔABE≌ΔCDF;②AG=GH=HC;③EG= BG;④SΔABE=SΔAGE,其中正确的结论是 。
18、小林在初三第一学期的数学书面测验成绩分别为:平时考试第一单元得84分,第二单元得76分,第三单元得92分;期中考试得82分;期末考试得90分。如果按照平时、期中、期末的权重分别为10%、30%、60%计算,那么小林该学期数学书面测验的总评成绩应为 分。
19、如图,在直线l上依次摆放着七个正方形。已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是 、 、 、 ,则 + + + = 。
20、如图,以菱形ABCD各边的中点为顶点作四边形 ,再以 各边的中点为顶点作四边形 ,…如此下去,得到四边形 ,若ABCD对角线长分别为a和b,请用含a、b的代数式表示四边形 的周长 。
填空题图
第19题图 第20题图
三.解答题(共40分,解答应写出文字说明、证明过程或推演步骤)
21、(6分)先化简,再求值:( - )÷ ,其中c=
22、(8分)如图,在等腰梯形ABCD中,AD//BC,M、N分别为AD、BC的中点,E、F分别为BM、 CM的中点。
(1)试探索四边形MENF是什么图形?请证明你的结论;
(2)若四边形MENF是正方形,则梯形的高与底边BC有何数量关系?并说明理由。
23、(10分)如图,直线 (k≠0)与x轴交于点B,与双曲线 交于点A、C,其中点A在第一象限,点C在第三象限。
(1)求双曲线的解析式;
(2)求A点的坐标;
(3)若 ,在x轴上是否存在点P,使△AOP是等腰三角形?若存在,请写出P点的坐标;若不存在,请说明理由。
24、(16分)如图,四边形ABCD中,AC=6,BD=8且AC⊥BD顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1;再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2…如此进行下去得到四边形AnBnCnDn。
(1)证明:四边形A1B1C1D1是矩形;
(2)写出四边形A1B1C1D1和四边形A2B2C2D2的面积;
(3)写出四边形AnBnCnDn的面积;
(4)求四边形A5B5C5D5的周长。
标签:数学试卷
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。