编辑:
2016-10-21
∴∠COP=∠CPO,
∴OC=CP=2,
∵∠PCE=∠AOB=60°,PE⊥OB,
∴∠CPE=30°,
∴CE= CP=1,
∴PE= = ,
∴OP=2PE=2 ,
∵PD⊥OA,点M是OP的中点,
∴DM= OP= .
故选:C.
【点评】此题考查了等腰三角形的性质与判定、含30°直角三角形的性质以及直角三角形斜边的中线的性质.此题难度适中,注意掌握数形结合思想的应用.
7.如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,AC=3,BC=4,则CD的长是( )
A.1 B. C. D.2
【考点】角平分线的性质;三角形的面积;勾股定理.
【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,利用勾股定理列式求出AB,再根据△ABC的面积公式列出方程求解即可.
【解答】解:如图,过点D作DE⊥AB于E,
∵∠C=90°,AD是△ABC的角平分线,
∴DE=CD,
由勾股定理得,AB= = =5,
S△ABC= AB•DE+ AC•CD= AC•BC,
即 ×5•CD+ ×3•CD= ×3×4,
解得CD= .
故选C.
【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,勾股定理,熟记性质并根据三角形的面积列出方程是解题的关键.
8.如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下列四个结论:
①OA=OD;
②AD⊥EF;
③当∠A=90°时,四边形AEDF是正方形;
④AE+DF=AF+DE.
其中正确的是( )
A.②③ B.②④ C.①③④ D.②③④
【考点】角平分线的性质;全等三角形的判定与性质;正方形的判定.
【专题】压轴题.
【分析】①如果OA=OD,则四边形AEDF是矩形,∠A=90°,不符合题意,所以①不正确.
②首先根据全等三角形的判定方法,判断出△AED≌△AFD,AE=AF,DE=DF;然后根据全等三角形的判定方法,判断出△AE0≌△AFO,即可判断出AD⊥EF.
③首先判断出当∠A=90°时,四边形AEDF的四个角都是直角,四边形AEDF是矩形,然后根据DE=DF,判断出四边形AEDF是正方形即可.
④根据△AED≌△AFD,判断出AE=AF,DE=DF,即可判断出AE+DF=AF+DE成立,据此解答即可.
标签:数学试卷
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。