您当前所在位置:首页 > 初中 > 初二 > 数学 > 数学知识点

精编八年级数学下册《全等三角形》知识点总结

编辑:sx_yanxf

2016-05-20

学习是一个不断深入的过程,他需要我们对每天学习的新知识点及时整理,接下来由精品学习网为大家提供了全等三角形知识点总结,望大家好好阅读。

定义   能够完全重合的两个三角形称为全等三角形.(注:全等三角形是相似三角形中的特殊情况)

当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角.

由此,可以得出:全等三角形的对应边相等,对应角相等.

(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;

(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;

(3)有公共边的,公共边一定是对应边;

(4)有公共角的,角一定是对应角;

(5)有对顶角的,对顶角一定是对应角; 三角形全等的判定公理及推论   1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因.

2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”).

3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”).

由3可推到

4、有两角及其一角的对边对应相等的两个三角形全等(AAS或“角角边”)

5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)

所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理.

注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状.

A是英文角的缩写(angle),S是英文边的缩写(side).

性质 1、全等三角形的对应角相等、对应边相等.

2、全等三角形的对应边上的高对应相等.

3、全等三角形的对应角平分线相等.

4、全等三角形的对应中线相等.

5、全等三角形面积相等.

6、全等三角形周长相等.

(以上可以简称:全等三角形的对应元素相等)

7、三边对应相等的两个三角形全等.(SSS)

8、两边和它们的夹角对应相等的两个三角形全等.(SAS)

9、两角和它们的夹边对应相等的两个三角形全等.(ASA)

10、两个角和其中一个角的对边对应相等的两个三角形全等.(AAS)

11、斜边和一条直角边对应相等的两个直角三角形全等.(HL) 运用   1、性质中三角形全等是条件,结论是对应角、对应边相等.而全等的判定却刚好相反.

2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键.在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便.

3,当图中出现两个以上等边三角形时,应首先考虑用SAS找全等三角形.

4、用在实际中,一般我们用全等三角形测等距离.以及等角,用于工业和军事.有一定帮助.做题技巧   一般来说考试中线段和角相等需要证明全等.

因此我们可以来采取逆思维的方式.

来想要证全等,则需要什么条件

另一种则要根据题目中给出的已知条件,求出有关信息.

然后把所得的等式运用(AAS/ASA/SAS/SSS/HL)证明三角形全等.

精品学习网初中频道为大家推荐的全等三角形知识点总结,大家仔细阅读了吗?更多知识点总结尽在精品学习网初中频道。

相关推荐:

初二下册数学《二次根式的加减法》知识点巩固 

精编初二数学下册《一次函数的应用》知识点梳理 

标签:数学知识点

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。