编辑:
2013-12-16
∵点A与A′关于CD对称,∠AOD的度数为60°,
∴∠A′OD=∠AOD=60°,PA=PA′.
∵点B是AD的中点,
∴∠BOD=30°.
∴∠A′OB=∠A′OD+∠BOD=90°.
又∵OB=OA′=2,
∴A′B=22.
∴PA+PB=PA′+PB=A′B=22.
(3)找点B关于AC的对称点B′,连接DB′并延长交AC于P即可.
26.解:(1)△OFC能成为等腰直角三角形,包括:
当F在BC中点时,CF=OF,BF=52;
当B与F重合时,OF=OC,BF=0.
(2)如图1,连接OB,则对于△OEB和△OFC有OB=OC,∠OBE=∠OCF=45°,
∵∠EOB+∠BOF=∠BOF+∠COF=90°,
∴∠EOB=∠FOC,
∴△OEB≌△OFC,
∴OE=OF.
(3)如图2,过P点作PM⊥AB,垂足为M,作PN⊥BC,垂足 为N,则
∵∠EPM+∠EPN=∠EPN+∠FPN=90°,
∴∠EPM=∠FPN.
又∵∠EMP=∠FNP=90°,
∴△PME∽△PNF,
∴PM∶PN=PE∶PF.
∵Rt△AMP和Rt△PNC均为等腰直角三角形,
∴△APM∽△PCN,∴PM∶PN=AP∶PC.
又∵PA∶AC=1∶4,∴PE∶PF=1∶3.
本文就为大家介绍到这里了,希望这篇九年级数学家庭作业之图形变换检测试题(含答案)可以对您的学习有所帮助。
相关推荐:
标签:数学家庭作业
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。