您当前所在位置:首页 > 初中 > 初三 > 数学 > 数学试卷

2012年初三上册数学期末试卷(附答案)

编辑:sx_liuwy

2013-02-05

以下是精品学习网为您推荐的 2012年初三上册数学期末试卷(附答案),希望本篇文章对您学习有所帮助。

 2012年初三上册数学期末试卷(附答案)

一、精心选一选(本大题共8小题,每小题3分,共24分)

1.下面四幅图是两个物体不同时刻在太阳光下的影子,按照时间的先后排序

正确的是( )

(A)A→B→C→D (B)D→B→C→A (C)C→D→A→B (D)A→C→B→D

2.已知直角三角形的两边长是方程x2-7 x+12=0的两根,则第三边长为( )

(A)7 (B)5 (C) (D)5或

3.已知3是关于x的方程 x2-2a+1=0的一个解,则2a的值是 ( )

(A)11 (B)12 (C)13 (D)14

4.下列命题中错误的( )

(A)一对邻角互补的四边形是平行四边形;

(B)一组对边平行,一组对角相等的四边形是平行四边形;

(C)等腰梯形的对角线相等;

(D)平行四边形的对角线互相平分.

5.如图,在直角坐标系中,直线y=6-x与函数y = (x>0)的图象

相交于点A、B,设点A的坐标为(x1 ,y1),那么长为x1,宽为y1

的矩形的面 积和周长分别为( )

(A)4,12 (B)8,12 (C)4,6 ( D)8,6

6.如果点A(-1, )、B(1, )、C( , )是反比例函数 图象上的三个点,

则下列结论正确的是( )

(A) > > (B) > > (C) > > D) > >

7.在联欢晚会上 ,有A、B、C三名同学站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳, 谁先抢到凳子谁获胜,为 使游戏公平,凳子最适当的位置在△ABC的( )

(A)三边中线的交点, (B)三条角平分线的交点 ,

(C)三边上高的交点, (D)三边中垂线的交点

8.边长为8cm的正方形纸片ABCD折叠 ,使点D落在BC边

中点E处,点A落在点F处,折痕为MN,则线段CN的

长是( ).

(A)2cm (B)3cm (C)4cm (D)5cm

二、认真填一填:(本大题共8小题,每小题3分,共24分.)

9.已知 是关于x的方程: 的一个解,则2a-1的值是 .

10.在一个有40万人口的县,随机调查了3000人,其中有2130人看中央电视台的焦点访谈节目,在该县随便问一个人,他看焦点访谈节目的概率大约是______________.

11.菱形有一个内角为600,较短的对角线长为6,则它的面积为 .

12.依次连接菱形各边中 点所得到的四边形是 .

13.如图,一几何体的三视图如右:

那么这个几何体是 .

14.用配方法将二次三项式 变形,

结果为 .

15.如图,若将四根木条钉成的矩形木框变为

平行四边形ABCD的形状,并使其面积为矩形

面积的一半,则这个平行四边形的一个最小内角

的值等于 .

16.如图,一个正方形摆放在桌面上,则正方形的边长为 .

三、细心做一做(17题每小题6分共12分18题8分)

17.(1)解方程 (2)解方程

18.(8分)如下图,一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN .

(1) 试判断是路灯还是太阳光产生的影子,如果是路灯产生的影子确定路灯的位置(用点P表示).如果是太阳光请画出光线.

(2) 在图中画出表示大树高的线段.

(3) 若小明的眼睛近似地看成是点D,试画图分析小明能否看见大树的部分.

四 解答题(19题7分、20题9分)

19.(7分)杨华与季红用5张规格相同的硬纸片做拼图游戏,正面如图1所示,背面完全一样,将它们背面朝上搅匀后,同时抽出两张.规则如下:

当两张硬纸片上的图形可拼成电灯或小人时,杨华得1分;

当两张硬纸片上的图形可拼成房子或小山时,季红得1分(如图2).

问题:游戏规则对双方公平吗?请说明理由;若你认为不公平,如何修改游戏规则才能使游戏对双方公平?

20.(9分)如图,已知直线y = - x+4与反比例函数 的图象相交于点A(-2,a),并且与x轴相交于点B.

(1)求a的值.

(2)求反比例函数的表达式.

(3)求△AOB的面积.

五(21、22题各10分)

21.( 10分)将一块正方形铁皮的四个角剪去一个边长为4cm的小正方形,做成一个无盖的盒子.已知盒子的容积是400cm3,求原铁皮的边长.

22.(10分)已知:如图,在ΔABC中,AB=AC,AD⊥BC,垂足为点D,AN是ΔABC

外角∠CAM的平分线,CE⊥AN,垂足为点E.

(1)求证:四边形ADCE是矩形

(2)当 ΔABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.

六(23、24题各10分)

23.(10分)某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆 的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?

24.(10分)如图,在□ABCD中,∠ DAB=60°,点E、F分别在CD、AB的延长线上,且AE=AD,CF=CB.

(1)求证:四边形AFCE是平行四边形;

(2)若去掉已知条件的“∠ DAB=60°”,上述的结论还成立吗? 若成立,请写出证明过程;若不成立,请说明理由.

七、(12分)

25.已知反比例函数 和一次函数y=2x-1,其中一次函数的图象经过

(a,b),(a+2,b+k)两点.

(1)求:反比例函数的解析式.

(2) 如图,已知点A在第一象限,且同时在上述两函数的图象上.求点A的坐标.

(3)利用(2)的结果,问在x轴上是否存在点P,使得AOP为等腰三角形.

若存在,把符合条件的P点坐标直接写出来;若不存在,说明理由.

八、(14分)

26.如图,在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10.点E在下底边BC上,点F在腰AB上.

(1)若EF平分等腰梯形ABCD的周长,设BE长为x,试用含x的代数式表示△BEF的面积 ;

(2)是否存在线段EF将等腰梯形ABCD的周长和面积同时平分?若存在,求出此时BE的长;若不存在,请说明理由;

(3)是否存在线段EF将等腰梯形ABCD的周长和面积同时分成1:2的两部分?若存在,求此时BE的长;若不存在,请说明理由.

2012—2013年九年级数学参考答案

一.选择题(本大题共8个小题,每题只有一个正确的选项,每小题3分,满分24分)

1.C 2.D 3.C 4.A 5.A 6.A 7.D 8.B

二.填空题(本大题共8个小题,每小题3分,满分24分)

9.13 10.0.71 11.18 12.矩形 13.空心圆柱 14. -100 15.30o

16.

三题

17.(1)

………………………………3分

…………………………………5分

……………………………………………6分

18.题略 (1)………3分 (2)………6分 (3)………8分(图作对即可)

四题

19.解:不公平,因为杨华胜的概率为 0.4季红胜的概率为0.6不公平. ………3分

应该为:当两张硬纸片上的图形可拼成电灯或小人时,杨华得3分; …5分

当两张硬纸片上的图形可拼成房子或小山时,季红得2分.……7分

20.(本小题9分)

解:(1) 将A(-2,a)代入y=-x+4中,得:a=-(-2)+4 所以 a =6 …………3分

(2)由(1)得:A(-2,6)www. Xkb1.coM

将A(-2,6)代入 中,得到 即k=-12

所以反比例函数的表达式为: ………6分

(3)如图:过A点作AD⊥x轴于D

因为 A(-2,6) 所以 AD=6

在直线y=-x+4中,令y=0,得x=4

所以 B(4,0) 即OB=4

所以△AOB的面积S= ×OB×AD= ×4×6=12………9分

五题(21、22题各10分)

21题(10分)

解:设原正方形的边长为xcm,则这个盒子的底面边长为x-8

由题意列出方程 4(x-8)2=400 ……………………………………………………5分

整理,得 x2 – 16x -36=0

解方程,得 x1 = 18, x2 = -2 ……………………………………………8分

因为正方形的边长不能为负数,所以x2 = -2舍去 ……………………………9分

因此,正方形的边长为18cm

答:原正方形的边长为18cm …………………………………………………10分

22.题(10分)

(1)证明:∵AB=AC, AD⊥BC

∴∠BAD=∠CAD,即∠CAD = ∠BAC

∵AN是ΔABC外角∠CAM的平分线

∴∠CAN= ∠CAM

∴∠CAD+∠CAN= ∠BAC+ ∠CAM=90°

∴∠DAN=9 0° ……………………………………………3分

又∵CE⊥AN ,AD⊥BC

∴ ∠AEC=90°,∠ADC=90°

∴四边形ADCE是矩形 …………………………5分

∵ΔABC为等腰直角三角形时,AD⊥BC

∴AD= BC=DC ……………………………………8分

∵四边形ADCE是矩形

∴四边形ADCE是一个正方形 ………………10分

六题(23、24题各10分)

23.解:设每盆花苗增加 株,则每盆花苗有 株,平均单株盈利为 元,由题意,

得 . ……………………………………………………5分

化简,整理,的 .

解这个方程,得 ………………………………………… ………9分

答:要使得每盆的盈利达到10元,每盆应该植入4株或5株.………………10分

24.解:(1)证明:∵四边形ABCD是平行四边形

∴DC∥AB,∠DCB=∠DAB=60°

∴∠ADE=∠CBF=60°

∵AE=AD,CF=CB

∴△AED,△CFB是正三角形,ED=BF ………………2分

在 ABCD中,AD=BC,DC∥=AB

∴ED+DC=BF+AB

即 EC=AF ………………3分

又∵DC∥AB

即EC∥AF

∴四边形AFCE是平行四边形 ………………4分

(2)上述结论还成立

证明:∵四边形ABCD是平行四边形

∴DC∥AB,∠DCB=∠DAB,AD=BC,DC∥=AB

∴∠ADE=∠CBF

∵AE=AD,CF=CB

∴∠AED=∠ADE,∠CFB=∠CBF

∴∠AED=∠CFB ………………6分

又∵AD=BC

∴△ADE≌△CBF ………………8分

∴ED=FB

∵DC=AB

∴ED+DC=FB+AB

即EC=FA ………………9分

∵DC∥AB

∴四边形AFCE是平行四边形 ………………10分

七题(12分)

25.题

解:(1)(a,b)(a+2, b+k)代入y=2x+1得:

b=2a-1

b+k=2(a+2)-1

解得 k=4 …………………………………………………………………4分

(2)当 =2x-1得

x 1= - 0 .5 x2=1

∵A点在第一象限

∴点A的坐标为(1,1) ………………………………………………………8分

(3)点p( 1,0)p(2,0)p( ,0) p(- ,0)……………………………12分

八题(14分)

26.解:(1)由已知条件得:

梯形周长为24,高4 ,面积为28.

BF=24÷2 –x=12–x ………………………………2分

过点F作FG⊥BC于G,过点A作AK⊥BC于K

则可得:FG= 12-x5 ×4 …………………………3分

∴S△BEF=12 BE•FG=-25 x2+245 x(7≤x≤10)…5分

(2)存在. ……………………… ……………………………6分

由(1)得:-25 x2+245 x=14 ……………………7分

得x1=7 x2=5(不合舍去)

∴存在线段EF将等腰梯形ABCD的周长与面积同时平分,此时BE=7.……8分

(3)不存在 .………………………………………………………………………………9分

假设存在,显然是:S△BEF∶SAFECD=1∶2,(BE+BF)∶(AF+AD+DC)=1∶2……… ……11分

则有-25 x2 +165 x = 283

整理得:3x2-24x+70=0

△=576-840<0

∴不存在这样的实数x. ………………………………………………………12分

即不存在线段EF将等腰梯形ABCD的周长和面积,同时分成1∶2的两部分. ……14分

精品学习网

标签:数学试卷

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。