您当前所在位置:首页 > 初中 > 初三 > 数学 > 数学试卷

2016年新人教版九年级数学上册第24章试卷及答案解析

编辑:

2016-09-28

A.4 B. C.6 D.

【考点】切线的性质;等边三角形的性质;含30度角的直角三角形;勾股定理;圆周角定理.

【专题】计算题;压轴题.

【分析】连接OD,由DF为圆的切线,利用切线的性质得到OD垂直于DF,根据三角形ABC为等边三角形,利用等边三角形的性质得到三条边相等,三内角相等,都为60°,由OD=OC,得到三角形OCD为等边三角形,进而得到OD平行与AB,由O为BC的中点,得到D为AC的中点,在直角三角形ADF中,利用30°所对的直角边等于斜边的一半求出AD的长,进而求出AC的长,即为AB的长,由AB﹣AF求出FB的长,在直角三角形FBG中,利用30°所对的直角边等于斜边的一半求出BG的长,再利用勾股定理即可求出FG的长.

【解答】解:连接OD,

∵DF为圆O的切线,

∴OD⊥DF,

∵△ABC为等边三角形,

∴AB=BC=AC,∠A=∠B=∠C=60°,

∵OD=OC,

∴△OCD为等边三角形,

∴∠CDO=∠A=60°,∠ABC=∠DOC=60°,

∴OD∥AB,

∴DF⊥AB,

在Rt△AFD中,∠ADF=30°,AF=2,

∴AD=4,即AC=8,

∴FB=AB﹣AF=8﹣2=6,

在Rt△BFG中,∠BFG=30°,

∴BG=3,

则根据勾股定理得:FG=3 .

故选:B

【点评】此题考查了切线的性质,等边三角形的性质,含30°直角三角形的性质,勾股定理,熟练掌握切线的性质是解本题的关键.

5.如图所示,O是线段AB上的一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于(  )

A.50° B.40° C.60° D.70°

【考点】切线的性质;圆周角定理.

【分析】连接OC,由CE为圆O的切线,根据切线的性质得到OC垂直于CE,即三角形OCE为直角三角形,再由同弧所对的圆心角等于所对圆周角的2倍,由圆周角∠CDB的度数,求出圆心角∠COB的度数,在直角三角形OCE中,利用直角三角形的两锐角互余,即可求出∠E的度数.

【解答】解:连接OC,如图所示:

∵圆心角∠BOC与圆周角∠CDB都对弧BC,

∴∠BOC=2∠CDB,又∠CDB=20°,

∴∠BOC=40°,

又∵CE为圆O的切线,

∴OC⊥CE,即∠OCE=90°,

则∠E=90°﹣40°=50°.

故选A.

【点评】此题考查了切线的性质,圆周角定理,以及直角三角形的性质,遇到直线与圆相切,连接圆心与切点,利用切线的性质得垂直,根据直角三角形的性质来解决问题.熟练掌握性质及定理是解本题的关键.

6.如图,在平面直角坐标系中,点A、B均在函数y= (k>0,x>0)的图象上,⊙A与x轴相切,⊙B与y轴相切.若点B的坐标为(1,6),⊙A的半径是⊙B的半径的2倍,则点A的坐标为(  )

A.(2,2) B.(2,3) C.(3,2) D.(4, )

标签:数学试卷

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。