编辑:sx_songyn
2014-06-12
2014年初三年级数学上册暑假作业
一、选择题
1.下列四个说法中,正确的是( )
A.一元二次方程 有实数根;
B.一元二次方程 有实数根;
C.一元二次方程 有实数根;
D.一元二次方程x2+4x+5=a(a≥1)有实数根.
【答案】D
2.一元二次方程 有两个不相等的实数根,则 满足的条件是
A. =0 B. >0
C. <0 D. ≥0
【答案】B
3.(2010四川眉山)已知方程 的两个解分别为 、 ,则 的值为
A. B. C.7 D.3
【答案】D
4.(2010浙江杭州)方程 x2 + x – 1 = 0的一个根是
A. 1 – B. C. –1+ D.
【答案】D
5.(2010年上海)已知一元二次方程 x2 + x ─ 1 = 0,下列判断正确的是( )
A.该方程有两个相等的实数根 B.该方程有两个不相等的实数根
C.该方程无实数根 D.该方程根的情况不确定
【答案】B
6.(2010湖北武汉)若 是方程 =4的两根,则 的值是( )
A.8 B.4
C.2 D.0
【答案】D
7.(2010山东潍坊)关于x的一元二次方程x2-6x+2k=0有两个不相等的实数根,则实数k的取值范围是( ).
A.k≤ B.k< C.k≥ D.k>
【答案】B
8.(2010云南楚雄)一元二次方程x2-4=0的解是( )
A.x1=2,x2=-2 B.x=-2 C.x=2 D. x1=2,x2=0
【答案】A
9.(2010云南昆明)一元二次方程 的两根之积是( )
A.-1 B. -2 C.1D.2
【答案】B
10.(2010 湖北孝感)方程 的估计正确的是 ( )
A. B.
C. D.
【答案】B
11.(2010广西桂林)一元二次方程 的解是 ( ).
A. , B. ,
C. , D. ,
【答案】A
12.(2010黑龙江绥化)方程(x-5)(x-6)=x-5的解是( )
A.x=5 B.x=5或x=6 C.x=7 D.x=5或x=7
【答案】D
二、填空题
1.(2010甘肃兰州) 已知关于x的一元二次方程 有实数根,则m的取值范围是 .
【答案】
2.(2010安徽芜湖)已知x1、x2为方程x2+3x+1=0的两实根,则x12+8x2+20=__________.
【答案】-1
3.(2010江苏南通)设x1、x2 是一元二次方程x2+4x-3=0的两个根,
2x1(x22+5x2-3)+a =2,则a= ▲ .
【答案】8
4.(2010四川眉山)一元二次方程 的解为___________________.
【答案】
5.(2010江苏无锡)方程 的解是 ▲ .
【答案】
6.(2010 江苏连云港)若关于x的方程x2-mx+3=0有实数根,则m的值可以为___________.(任意给出一个符合条件的值即可)
【答案】
7.(2010湖北荆门)如果方程ax2+2x+1=0有两个不等实数根,则实数a的取值范围是
【答案】a<1且a≠0
8.(2010湖北鄂州)已知α、β是一元二次方程x2-4x-3=0的两实数根,则代数式(α-3)(β-3)= .
【答案】-6
9.(2010 四川绵阳)若实数m满足m2- m + 1 = 0,则 m4 + m-4 = .
【答案】62
10.(2010 云南玉溪)一元二次方程x2-5x+6=0 的两根分别是x1,x2, 则x1+x2等于
A. 5 B. 6 C. -5 D. -6
【答案】A
11.(2010 四川自贡)关于x的一元二次方程-x2+(2m+1)x+1-m2=0无实数根,则m的取值范围是_______________。
【答案】<-
12.(2010 广西钦州市)已知关于x的一元二次方程x2 +kx +1 =0有两个相等的实数根,
则k = ▲ .
【答案】±2
23.(2010广西柳州)关于x的一元二次方程(x+3)(x-1)=0的根是_____________.
【答案】x=1或x=-3
13.(2010福建南平)写出一个有实数根的一元二次方程___________________.
【答案】答案不唯一,例如: x2-2x+1 =0
14.(2010广西河池)方程 的解为 .
【答案】
15.(2010湖南娄底)阅读材料:
若一元二次方程ax2+bx+c=0(a≠0)的两个实根为x1、x2,则两根与方程系数之间有如下关系:
x1+x2= -,x1x2=
根据上述材料填空:
已知x1、x2是方程x2+4x+2=0的两个实数根,则 +=_________.
【答案】-2
16.(2010广西百色)方程 -1的两根之和等于 .
【答案】2
相关推荐:
标签:数学暑假作业
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。