编辑:sx_yanxf
2016-05-15
数学是一个要求大家严谨对待的科目,有时一不小心一个小小的小数点都会影响最后的结果。下文就为二次函数随堂练习,希望大家认真对待。
一、选择题
1.已知二次函数y=ax2+bx+c的图象如图,下列结论中,正确的结论的个数有 ( )
① a + b + c>0 ② a - b + c<0 ③ abc < 0 ④ b =2a ⑤ b >0
A. 5个 B. 4个 C .3个 D. 2个
2.抛物线y=x2-ax+a-2与坐标轴的交点个数有( )
A.3个 B.2个 C.1个 D.0个
3.下列过原点的抛物线是 ( )
A.y=2x2-1 B. y=2x2+1 C. y=2(x+1)2 D. y=2x2+x
4.已知抛物线过A(-1, 0)和B (3, 0)两点,与y轴交于点C,且BC= ,则这条抛物线的解析式为( )
A.y=-x2+2x+3 B. y=x2-2x-3 C. y=x2+2x-3 或y= -x2+2x+3 D. y= -x2+2x+3或y= x2-2x-3
5.二次函数y= a (x+m)2-m (a≠0) 无论m为什么实数,图象的顶点必在 ( )
A.直线y=-x上 B. 直线y=x上 C.y轴上 D.x轴上
6.如图,在直角三角形AOB中,ABOB,且OB=AB=3,设直线 ,
截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为 ( )
7. 关于二次函数y=ax2+bx+c的图象有下列命题:
① 当c=0时,函数的图象经过原点;
② 当c>0且函数的图象开口向下时,方程ax2+bx+c=0必有两个不等实根;
③ 函数图象最高点的纵坐标是 ;
④ 当b=0时,函数的图象关于y轴对称.其中正确的命题的个数有 ( )
A. 1个 B. 2个 C. 3个 D. 4个
8. 若一抛物线y=ax2与四条直线x=1,x=2, y =1, y =2 围成的正方形有公共点,则a的取值范围是 ( )
二、填空题
9.抛物线y=-2(x+1)2+1的顶点坐标是 .
10.将y=2x2的函数图象向左平移3个单位,再向上平移2个单位,得到二次函数解析式为 .
11.抛物线y=(1-k)x2-2x-1与x轴有两个交点,则k的取值范围是 .
12.已知二次函数y=x2+kx-12的图象向右平移4个单位后,经过原点,则k的值是
13.写出一个二次函数的解析式,使它的顶点恰好在直线y=x+2上,且开口向下,则这个二次函数解析式可写为 .
14.二次函数 y=ax2+c(a,c为已知常数),当x取值x1,x2时(x1≠x2),函数值相等,则当x取x1+x2时,函数值为 .
三、解答题
15.根据下列不同条件,求二次函数的解析式:
(l)二次函数的图象经过A (1, l),B(l, 7), C(2,4)三点;
(2)已知当x=2时,y有最小值3,且经过点(l,5 );
(3)图象经过(-3,0),(l,0), (-l,4)三点.
16.画出函数y=x2-2x-3象,利用图象回答下列问题:
(l)x取何值时,y随x的增大而减小?
(2)当x取何值时, y=0, y>O, y<0?
(3)若x1>x2>x3>1 时,比较yl, y2, y3的大小
17.已知二次函数y=-2x2,怎样平移这个函数图象,才能使它经过(0,0)和(1,6 )两点?
18.某广告公司设计一幅周长为12m的矩形广告牌,广告设计费为每平方米1000元,设矩形-边长为x(m) ,面积为S(m2).
(l)求出S与t之间的函数关系式,并确定自变量x的取值范围;
(2)请你设计一个方案,使获得的设计费最多,并求出这个费用.
19.某跳水运动员进行IOm跳台跳水的训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为己知条件).在跳某个规定动作时,正确情况下,该运动员在空中的最高处距水面 m,入水处与池边的距离为4m, 同时,运动员在距水面高度为5m以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.
(l)求这条抛物线的解析式;
(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为 ,问:此次跳水会不会失误?通过计算说明理由.
2. 把y= -x2-4x+2化成y= a (x+m)2 +n的形式是( )
A.y= - (x-2 )2 -2 B.y= - (x-2 )2 +6 C. y = - (x+2 )2 -2 D. y= - (x+2 )2 +6
精品学习网为大家提供的最新二次函数随堂练习,大家仔细做了吗?希望够帮助到大家。
相关推荐:
标签:数学同步练习
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。