您当前所在位置:首页 > 初中 > 初三 > 数学 > 数学知识点

人教版九年级数学上册知识点二次根式知识讲解

编辑:sx_bilj

2014-02-11

鉴于数学知识点的重要性,小编为您提供了这篇人教版九年级数学上册知识点二次根式知识讲解,希望对同学们的数学有所帮助。

I.二次根式的定义和概念:

1、定义:一般地,形如√ā(a≥0)的代数式叫做二次根式。当a>0时,√a表示a的算数平方根,√0=0

2、概念:式子√ā(a≥0)叫二次根式。√ā(a≥0)是一个非负数。

II.二次根式√ā的简单性质和几何意义

1)a≥0 ; √ā≥0 [ 双重非负性 ]

2)(√ā)^2=a (a≥0)[任何一个非负数都可以写成一个数的平方的形式]

3) √(a^2+b^2)表示平面间两点之间的距离,即勾股定理推论。

III.二次根式的性质和最简二次根式

1)二次根式√ā的化简

a(a≥0)√ā=|a|={   -a(a<0)

2)积的平方根与商的平方根

√ab=√a·√b(a≥0,b≥0)

√a/b=√a /√b(a≥0,b>0)

3)最简二次根式

条件:

(1)被开方数的因数是整数或字母,因式是整式;

(2)被开方数中不含有可化为平方数或平方式的因数或因式。

如:不含有可化为平方数或平方式的因数或因式的有√2、√3、√a(a≥0)、√x+y 等;

含有可化为平方数或平方式的因数或因式的有√4、√9、√a^2、√(x+y)^2、√x^2+2xy+y^2等

IV.二次根式的乘法和除法

1 运算法则

√a·√b=√ab(a≥0,b≥0)

√a/b=√a /√b(a≥0,b>0)

二数二次根之积,等于二数之积的二次根。

2 共轭因式

如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做共轭因式,也称互为有理化根式。

V.二次根式的加法和减法

1 同类二次根式

一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。

2 合并同类二次根式

把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。

3二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并

Ⅵ.二次根式的混合运算

1确定运算顺序

2灵活运用运算定律

3正确使用乘法公式

4大多数分母有理化要及时

5在有些简便运算中也许可以约分,不要盲目有理化

VII.分母有理化

分母有理化有两种方法

I.分母是单项式

如:√a/√b=√a×√b/√b×√b=√ab/b

II.分母是多项式

要利用平方差公式

如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b

II.分母是多项式

要利用平方差公式

如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b

这篇人教版九年级数学上册知识点二次根式知识讲解是精品小编精心为同学们准备的,祝大家学习愉快!

相关推荐:

初三同步知识点:圆柱与圆锥的侧面展开图  

初三同步知识点:直线与圆的位置关系  

标签:数学知识点

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。