您当前所在位置:首页 > 初中 > 初三 > 数学 > 数学知识点

苏教版窗初三数学一元二次方程知识点整合

编辑:

2016-11-01

四、一般解法

一元二次方程的一般解法有以下几种:

配方法(可解部分一元二次方程)

公式法(在初中阶段可解全部一元二次方程,前提:△≥0)

因式分解法(可解部分一元二次方程)

直接开平方法(可解全部一元二次方程)

详情点击:九年级数学一元二次方程的解法知识点

五、小结及例题

一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。

直接开平方法是最基本的方法。

公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程是否有解。

配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好。(三种重要的数学方法:换元法,配方法,待定系数法)。

例5:用适当的方法解下列方程。(选学)

(1)4(x+2)^2-9(x-3)^2=0;(2)x^2+2x-3=0;(3)4x^2-4mx-10x+m^2+5m+6=0

分析:

(1)首先应观察题目有无特点,不要盲目地先做乘法运算。观察后发现,方程左边可用平方差

公式分解因式,化成两个一次因式的乘积。

(2)可用十字相乘法将方程左边因式分解。

(3)把方程变形为 4x^2-2(2m+5)x+(m+2)(m+3)=0,然后利用十字相乘法因式分解。

(1)解:4(x+2)^2-9(x-3)^2=0

[2(x+2)+3(x-3)][2(x+2)-3(x-3)]=0

(5x-5)(-x+13)=0

5x-5=0或-x+13=0

∴x1=1,x2=13

(2)解: x^2+2x-3=0

[x-(-3)](x-1)=0

x-(-3)=0或x-1=0

∴x1=-3,x2=1

(3)解:4x^2-4mx-10x+m^2+5m+6=0

4x^2-2(2m+5)x+(m+2)(m+3)=0

[2x-(m+2)][2x-(m+3)]=0

2x-(m+2)=0或2x-(m+3)=0

∴x1=(m+2)/2,x2=(m+3)/2

例6:求方程3(x+1)^2+5(x+1)(x-4)+2(x-4)^2=0的二根。(选学)

分析:此方程如果先做乘方,乘法,合并同类项化成一般形式后再做将会比较繁琐,仔细观察题目,我们发现如果把x+1和x-4分别看作一个整体,则方程左边可用十字相乘法分解因式(实际上是运用换元的方法)

解:[3(x+1)+2(x-4)][(x+1)+(x-4)]=0

即 (5x-5)(2x-3)=0

∴5(x-1)(2x-3)=0

∴(x-1)(2x-3)=0

∴x-1=0或2x-3=0

∴x1=1,x2=3/2是原方程的解。

标签:数学知识点

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。