您当前所在位置:首页 > 初中 > 初一 > 数学 > 初一数学教案

平方根(2)教案

编辑:sx_liuwy

2012-11-12

以下是精品学习网为您推荐的平方根(2)教案,希望本篇文章对您学习有所帮助。

平方根(2)教案

学习目标:

1、在实际问题中,感受算术平方根存在的意义,理解算术平方根的概念,算术平方根具有双重非负性

2、会用计算器求一个数的算术平方根;利用计算器探究被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律;

学习重点:理解算术平方根的概念

学习难点:算术平方根具有双重非负性

学习过程:

一、 学习准备

1、阅读课本第3页,由题意得出方程x²= ,那么X= ,

这种地砖一块的边长为 m

2、正数a有2个平方根,其中正数a的正的平方根,也叫做a的算术平方根。

例如,4的平方根是 , 叫做4的算术平方根,记作 =2,

2的平方根是“ ”, 叫做2的算术平方根,

3、(1)16的算术平方根的平方根是什么? 5的算术平方根是什么?

(2)0的算术平方根是什么? 0的算术平方根有几个?

(3)2、-5、-6有算术平方根吗?为什么?

4、按课本第4页例题1格式求下列各数的算术平方根:

(1)625(2)0. 81;(3)6;(4) (5) (6)

二、合作探究:

1、阅读课本第5页利用计算器求算术平方根的方法,利用计算器求下列各式的值。

(1) (2) (3)

2、利用计算器求下列各数的算术平方根

a 20000 200 2 0.02 0.0002

通过观察算术平方根,归纳被开方数与算术平方根之间小数点的变化规律

3、在 中, 表示一个 数, 表示一个 数,算术平方根具有

练习:若|a-5|+ =0,则 的平方根是

三、学习体会:

本节课你学到哪些知识?哪些地方是我们要注意的?你还有哪些疑惑?

四、自我测试:

1、判断下列说法是否正确:

①5是25的算术平方根;( )②-6是 的算术平方根; ( )

③ 0的算术平方根是0;( ) ④ 0.01是0.1的算术平方根; ( )

⑤一个正方形的边长就是这个正方形的面积的算术平方根. ( )

2、若 =2.291, =7.246,那么 =( )

A.22.91 B. 72.46 C.229.1 D.724.6

3、下列各式哪些有意义,哪些没有意义?

①- ② ③ ④

4、求下列各数的算术平方根

①121 ②2.25 ③ ④(-3)2

5、求下列各式的值 ① ② ③ ④

思维拓展:

1、一个数的算术平方根等于它本身,这个数是 。

2、若x²=16,则5-x的算术平方根是 。

3、若4a+1的平方根是±5,则a²的算术平方根是 。

4、 的平方根等于 ,算术平方根等于 。

5、若|a-9|+ =0,则 的平方根是

6、 的平方根等于 ,算术平方根是 。

7、 ,求xy算术平方根是。

数学小知识——怎样用笔算开平方

我国古代数学的成就灿烂辉煌,早在公元前一世纪问世的我国经典数学著作《九章算术》里,就在世界数学史上第一次介绍了上述笔算开平方法.据史料记载,国外直到公元五世纪才有对于开平方法的介绍.这表明,古代对于开方的研究我国在世界上是遥遥领先的.

1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11'56),分成几段,表示所求平方根是几位数;

2.根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3);

3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第 二段数组成第一个余数(竖式中的256);

4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(3×20除256,所得的最大整数是 4,即试商是4);

5.用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数);

6.用同样的方法,继续求平方根的其他各位上的数.如图2所示分别求85264, 12.5平方根的过程。自己举例试试!

相关推荐:

具有相反意义的量学案

有理数的加法与减法3

更多初一数学教案请关注精品学习网  

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。