编辑:sx_liuwy
2012-11-16
以下是精品学习网为您推荐的教案实际问题与一元一次不等式,希望本篇文章对您学习有所帮助。
实际问题与一元一次不等式
教学目标:
1.会解一元一次不等式.
2.会用不等式来表示实际问题中的不等关系 .
教学重点、难点:
教学过程:
复习提问:
解一元一次不等式的一般步骤是什么?
新课:
例1 解不等式3(1-x)<2(x+9),并把它的解集在数轴上表示出来.
解:去括号,得
3-3x<2x+18
移项,得
-3x-2x<18-3
合并,得
-5x < 15
系数化成1,得
x >-3
这个不等式的解集在数轴上表示如下:
归纳:
解一元一次方程,要根据等式的性质,将方程 逐步化为x=a的形式;而解一元一次不等式,则要根 据不等式的性质,将不等式逐步化为x
练习:P140练习1、2
例2 2002年北京空气质量良好 (二级以上)的天数与全年天数之比达到55%,如果到2008年这样的比值要超过70%,那么2008年空气质量良好的天数要比2002年至少增加多少?
讨论 2002年北京空气质量良好的天数是多少?用x表示2008年增加的空气质量良好的天数,则2008年北京空气质量良好的天数是多少?与x有关的哪个式子的值应超过70%?这个式子表示什么?
例3 某次知识竞赛共有20 道题,每一题答对得10分,答错或不答都扣5分.小明得分要超过90分,他至少要答 对多少道题?
练习:P140-3
P141-5、6
作业:P141习题9.2――7、8、9
9.2实际问题 与一元一次不等式(二)
教学目标:
1.会解一元一次不等式.
2.会用不等式来表示实际问题中的不等关系.
教学重点、难点:
教学过程:
新课:
例 甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费.顾客怎样选择商店购物能获得更大优惠?
这个问题较复杂,从何处入后考虑它呢?
甲商店优 惠方案的起点为购物款达___元后;
乙商店优惠方案的起点为购物款过___元后.
我们是否应分情况考虑?可以怎样分情况呢?
(1)如果累计购物不超过50元,则在两店购物花费有区别吗?
(2)如果累计购物超过50元而不超过100元,则在哪家商店购物花费小?为什么?
(3)如果累计购物超过100元,那么在甲店购物花费小吗?
练习:
1.某校校长暑假将带领该校市级优秀学生乘旅行社的车去A市参加科技夏令营,甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优 惠”.乙旅行社说:“包括校长在内全部按全票的6折优惠”,若全票价为240元.
(1)设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙.分别计算两家旅行社的收费(建 立表达式);
(2)当学生数是多少时,两家旅行社的收费一样?
(3) 就学生数x讨论哪家旅行社更优惠.
2.某商店出售茶壶和茶杯,茶壶每只20元,茶杯每只5元,该商店有两种优惠办法:
(1) 买一只茶壶送一只茶杯;
(2) 按总价的92%付款.现有一顾客需购买4只茶壶,茶杯若干只(不少于4只).
请问:顾客买同样多的茶杯时,用哪一种优惠办法购买省钱?
3.某人的移动电话(手机)可选择两种收费办法中的一种,甲种收费办法是,先交月租费50元,每通一次电话再收费0.40元;乙种收费办法是,不交月租费,每通一次电话收 费0.60元.问每月通话次数在什么范围内选择甲种收费办法合适?在什么范围内时选择乙种收费办法合适?
补充练习:
1.有一批货物,如月初售出,可获利1000元,并可将本利之和再去投资,到月末获1.5%的利息;如 月末售出这批货,可获利1200元,但要付 50元保管费.问这批货在月初还是月末售出好.
2.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划用水超出部分每吨收费0.8元.如果单位自建水泵房抽水,每月需交500元管理费,另外每月一吨水再交0.28元,已知每抽一吨水需成本0.07元.问该单位是用自来水公司的水合算,还是自建水泵房抽水合算.、
相关推荐:
更多初一数学教案请关注精品学习网
标签:初一数学教案
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。