您当前所在位置:首页 > 初中 > 初一 > 数学 > 初一数学教案

有理数的乘除法教案

编辑:sx_liuwy

2012-11-20

 以下是精品学习网为您推荐的有理数的乘除法教案,希望本篇文章对您学习有所帮助。

有理数的乘除法

一、教学目标

知识与技能:

①使学生在了解乘法的基础上,掌握有理数乘法法则并初步掌握有理数乘法法则的合理性。

②会进行有理数乘法运算。

③了解有理数的倒数定义,会求一个数的倒数。

过程与方法:

①经历探索有理数乘法法则,发展,观察,归纳,猜想,验证的能力以及培养学生的语言表达能力。

②提高学生的运算能力

情感与态度:通过合作学习调动学生学习的积极性,激发学生学习数学的兴趣,提高学生认识世界的水平。

二、 教学重点和难点

重点:依据有理数的乘法法则,熟练进行有理数的乘法运算;

难点:有理数乘法中的符号法则.

三、教学过程

(一) 创设问题情景,激发学生的求知欲望,复习旧知,导入新课

前面我们学习了有理数的加减法,接下来就应该学习有理数的乘除法.同学们先看下面的问题:甲水库的水位每天升高3㎝,乙水库的水位每天下降3㎝。4天后,甲、乙水库各自水位的总变化量是多少?

如果用正号表示水位的上升、用负号表示水位的下降。那么,4天后,甲水库水位的总变化量是:3+3+3=3×4=12㎝

乙水库水位的总变化量是:(-3)+(-3)+(-3)+(-3)=(-3)×4=-12㎝引出课题:有理数的乘法

(二)学生探索新知,归纳法则

学生分为四个小组活动,进行乘法法则的探索

设蜗牛现在的位置为点O,若它一直都是沿直线爬行,而且每分钟爬行2cm,问:

(1)向右爬行,3分钟后的位置?

(2)向左爬行,3分钟后的位置?

(3)向右爬行,3分钟前的位置?

(4)向左爬行,3分钟前的位置?

(学生思考后回答) 要确定蜗牛的位置需要知道:距离和方向。

为了区分方向:我们规定向右为正,向左为负;为区分时间:我们规定现在的时间前为负,现在的时间后为正。

(1) 情形一:蜗牛在现在位置的右边6㎝处。式子表示为:

(+2)×(+3)=+6

数轴表示如右:

(2)情形二:蜗牛在现在位置的左边6㎝处。式子表示为: (-2)×3=-6

数轴表示如右:

(3)情形三:蜗牛在现在位置的左边6㎝处。式子表示为: (+2)×(-3)=-6

数轴表示如右

(4)情形四:蜗牛在现在位置的右边6㎝处。式子表示为: (-2)×(-3)=+6

数轴表示如右:

仔细观察上面得到的四个式子:

(1)(+2)×(+3)=+6

(2)(-2)×3=-6

(3)(+2)×(-3)=-6

(4)(-2)×(-3)=+6

根据你对乘法的思考,你得到什么规律?

(三)学生归纳法则

a.符号:在上述4个式子中,我们只看符号,有什么规律?

(+)×(+)=( ) 同号得

(-)×(+)=( ) 异号得

(+)×(-)=( ) 异号得

(-)×(-)=( ) 同号得

b.任何数与零相乘,积仍为 。

(四)师生共同用文字叙述有理数乘法法则。

归纳:有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘,积仍为0。

(五) 运用法则计算,巩固法则。

例1计算:(1) (-5) ×(-3); (2) (-7)×4; (3) (-3)×9; (4)(-3) ×(- )

引导学生观察、分析例1中(4)小题两因数的关系,得出:有理数中仍然有:乘积是1的两个数互为倒数.

例2. 见课本P30页

(六)分层练习,巩固提高。

(1)计算(口答):

① ② ③ ④

⑤ ⑥ ⑦ ⑧

四.课题小结

(1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同0相乘,都得0。

(2)如何进行两个有理数的乘法运算: 先确定积的符号,再把绝对值相乘,当有一个因数为零时,积为零。

五.作业布置

课本P30页练习1,2,3.

1.4.2 有理数的乘法

——(第2课时)

一、教学目标:

1、经历探索多个有理数相乘的符号确定法则.

2、会进行有理数的乘法运算.

3、通过对问题的探索,培养观察、分析和概括的能力.

二、教学重点和难点

学习重点:多个有理数乘法运算符号的确定

学习难点:正确进行多个有理数的乘法运算

三、教学过程

(一)、学前准备

请同学们先合作做个游戏: 用9张扑克牌(可以替代的纸片也行)全部反面向上放在桌上,每次翻动其中任意2张(包括已翻过的牌),使它们从一面向上变为另一面向上,这样一直做下去,看看能否使所有的牌都正面向上?

结果怎么样,你能明白其中的数学道理吗?

(二)、探究新知

1、观察:下列各式的积是正的还是负的?

2×3×4×(-5),

2×3×(-4)×(-5),

2×(×3)× (×4)×(-5),

(-2) ×(-3) ×(-4) ×(-5).

思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?

分组讨论交流,再用自己的语言表达所发现的规律:

几个不是0的数相乘,负因数的个数是 偶数 时,积是正数;负因数的个数是 奇数 时,积是负数.

2、利用所得到的规律,看看翻牌游戏中的数学道理。

(三)、新知应用

1、例题3,(30页)例3,

请你思考,多个不是0的数相乘,先做哪一步,再做哪一步?你能看出下列式子的结果吗?如果能,理由 几个数相乘,如果其中又因数为0,积等于0

例:7.8×(-8.1)×O× (-19.6)

师生小结:几个数相乘,如果其中又因数为0,积等于0

2、练习

计算

1)、—5×8×(—7)×(—0.25) 2)、

四、课堂小结

1、通过这节课的学习,我的感受是:几个数相乘,如果其中又因数为0,积等于0

五.作业布置

一、选择

1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( )

A.一定为正 B.一定为负 C.为零 D. 可能为正,也可能为负

2.若干个不等于0的有理数相乘,积的符号( )

A.由因数的个数决定 B.由正因数的个数决定

C.由负因数的个数决定 D.由负因数和正因数个数的差为决定

3.下列运算结果为负值的是( )

A.(-7)×(-6) B.(-6)+(-4); C.0× (-2)(-3) D.(-7)-(-15)

4.下列运算错误的是( )

A.(-2)×(-3)=6 B.

C.(-5)×(-2)×(-4)=-40 D.(-3)×(-2)×(-4)=-24

二、计算 1、(-7.6)×0.5; 2、 .

1.4.3 有理数的乘法

——(第3课时)

一、教学目标:

1、熟练有理数的乘法运算并能用乘法运算律简化运算.

2、让学生通过观察、思考、探究、讨论,主动地进行学习.

3、培养学生语言表达能力以及与他人沟通、交往能力,使其逐渐热爱数学这门课程.

二、教学重点和难点

教学重点:正确运用运算律,使运算简化

教学难点:运用运算律,使运算简化

三、教学过程

一、学前准备

1、下面两组练习,请同学们选择一组计算.并比较它们的结果:

1)(-7)×8 8×(-7)

[(-2)×(-6)]×5 (-2)×[(-6)×5]

2)(- )×(- ) (- )×(- )

[ ×(- )]×(-4) ×[(- )×(-4)]

3)

请以小组为单位,相互检查,看计算对了吗?

二、探究新知

1、下面我们以小组为单位,仔细观察上面的式子与结果,把你的发现相互交流交流.

2、怎么样,在有理数运算律中,乘法的交换律,结合律以及分配律还成立吗?

3、归纳、总结

乘法交换律:两个数相乘,交换因数的位置,积 相等 .

即:ab= ba

乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积 相等

即:(ab)c= a(bc)

乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加

即:a(b+c)=ab+bc

三、新知应用

1、例题

用两种方法计算 ( + - )×12

2、看谁算得快,算得准

1)(-7)×(- )× 2) 9 ×15.

四、课堂小结

怎么样,这节课有什么收获,还有那些问题没有解决?

乘法交换律:两个数相乘,交换因数的位置,积 相等 .

即:ab= ba

乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积 相等

即:(ab)c= a(bc)

乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加

即:a(b+c)=ab+bc

五.作业布置

1、(-85)×(-25)×(-4); 2、(- )×15×(-1 );

3、( )×30; 4、 ×(—7).

5、-9×(-11)+12×(-9) 6、

1.4.4 有理数的除法

——(第4课时)

一、教学目标:

1、理解除法是乘法的逆运算;

2、掌握除法法则,会进行有理数的除法运算;

3、经历利用已有知识解决新问题的探索过程.

二、教学重点和难点

教学重点:有理数的除法法则

教学难点:理解商的符号及其绝对值与被除数和除数的关系

三.教学过程

(一)、学前准备

1、师生活动

1)、小明从家里到学校,每分钟走50米,共走了20分钟.

问小明家离学校有 1000 米,列出的算式为 50 20=1000 .

2)放学时,小明仍然以每分钟50米的速度回家,应该走 20 分钟.

列出的算式为 1000 =20

从上面这个例子你可以发现,有理数除法与乘法之间的关系互为逆运算

(二)、合作交流、探究新知

1、小组合作完成

比较大小:8÷(-4) 8×(一 );

(-15)÷3 (-15)× ;

(一1 )÷(一2) (-1 )×(一 )

再相互交流、并与小学里学习的乘除方法进行类比与对比,归纳有理数的除法法则:1)、除以一个不等于0的数,等于 乘这个数的倒数.

2)、两数相除,同号得 正 ,异号得 负 ,并把绝对值相 加减 ,0除以任何一个不等于0的数,都得 0 .

2,运用法则计算:

(1)(-15)÷(-3); (2)(-12)÷(一 ); (3)(-8)÷(一 )

3,师生共同完成P34例5.

(三)1、练习:P35

2、P35例6、例7、

3、练习: P36第1、2题

四.课堂小结

通过这节课的学习,你的收获是:

1)、除以一个不等于0的数,等于 乘这个数的倒数.

2)、两数相除,同号得 正 ,异号得 负 ,并把绝对值相 加减 ,0除以任何一个不等于0的数,都得 0 .

五.作业布置

1、计算

(1)(+48)÷(+6); (2) ;

(3)4÷(-2); (4)0÷(-1000).

2、计算.

(1)(-1155)÷[(-11)×(+3)×(-5)]; (2)375÷ ;

1、P39第1、2、3、4题

1.4.5有理数的除法

—— (第5课时)

一、教学目标:

1、学会用计算器进行有理数的除法运算.

2、掌握有理数的混合运算顺序.

3、通过探究、练习,养成良好的学习习惯

二、教学重点和难点

1、学习重点:有理数的混合运算

2、学习难点:运算顺序的确定与性质符号的处理

三、教学过程

(一)、学前准备

1、计算

1)(—0.0318)÷(—1.4) 2)2+(—8)÷2

(二)、探究新知

1、由上面的问题1,计算方便吗?想过别的方法吗?

2、由上面的问题2,你的计算方法是先算 乘除 法,再算 加减 法。

3、结合问题1,阅读课本P36—P37页内容(带计算器的同学跟着操作、练习)

4、结合问题2,你先猜想,有理数的混合运算顺序应该是 先算乘除法,再算加减法 。

5、阅读P36,并动手做做

三、新知应用

1、计算

1)、18—6÷(—2)× 2)11+(—22)—3×(—11)

3)(—0.1)÷ ×(—100)

四.课堂小结:请你回顾本节课所学习的主要内容:

1、有理数的混合运算顺序应该是 先算乘除法,再算加减法 。

2、计算器的使用。

五、作业 1、P39第7题(4、5、7、8)、 第8题

相关推荐:

具有相反意义的量学案

有理数的加法与减法3

 

更多初一数学教案请关注精品学习网  

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。