您当前所在位置:首页 > 初中 > 初一 > 数学 > 初一数学教案

余角和补角教案

编辑:sx_liuwy

2012-12-06

 以下是精品学习网为您推荐的4.3.4 余角和补角教案,希望本篇文章对您学习有所帮助。

4.3.4 余角和补角

教学目标:

1、知识与技能:

⑴、在具体的现实情境中,认识一个角的余角和补角,掌握余角和补角的性质。

⑵、了解方位角,能确定具体物体的方位。

2、过程与方法:

进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想。

3、情感态度与价值观:

体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益。

重、难点及关键:

1、重点:认识角的互余、互补关系及其性质,确定方位是本节课的重点。

2、难点:通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质是难点。

3、关键:了解推理的意义和推理过程是掌握性质的关键。

教学过程:

一、引入新课:

让学生观察意大利著名建筑比萨斜塔。

比萨斜塔建于1173年,工程曾间断了两次很长的时间,历经约二百年才完工。设计为垂直建造,但是在工程开始后不久便由于地基不均匀和土层松软而倾斜。

二、新课讲解:

1、探究互为余角的定义:

如果两个角的和是90°(直角),那么这两个角叫做互为余角,其中一个角是另一个角的余角。即:∠1是∠2的余角或∠2是∠1的余角。

2、练习⑴:

图中给出的各角,那些互为余角?

3、探究互为补角的定义:

如果两个角的和是180°(平角),那么这两个角叫做互为补角,其中一个角是另一个角的补角。即:∠3是∠4的补角或∠4是∠3的补角。

4、练习⑵:

(1)图中给出的各角,那些互为补角?

(2)填下列表:

∠a ∠a的余角 ∠a的补角

32°

45°

77°

62°23′

结论:同一个锐角的补角比它的余角大90°。

(3)填空:

①70°的余角是  ,补角是    。

②∠a(∠a <90°)的它的余角是 ,它的补角是 。

重要提醒:ⅰ(如何表示一个角的余角和补角)

锐角∠a的余角是(90 °—∠ a )

∠a的补角是(180 °—∠ a )

ⅱ互余和互补是两个角的数量关系,与它们的位置无关。

5、讲解例题:

例1:若一个角的补角等于它的余角4倍,求这个角的度数。

解: 设这个角是x °,则它的补角是( 180°-x°),余角是(90°-x°) 。

根据题意得:

(180-x°)= 4 (90-x°)

解之得: x =60

答:这个角的度数是60 °。

6、练习⑶:

一个角的补角是它的3倍,这个角是多少度?

7、探究补角的性质:

如图∠1 与∠2互补,∠3 与∠4互补 ,如果∠1=∠3,那么∠2与∠4相等吗?为什么?

教师活动:操作多媒体演示。

学生活动:观察图形的运动,得出结果:∠2=∠4

补角性质:同角或等角的补角相等

教师活动:向学生说明,以上从观察图形得到的结论,还可以从理论上说明其理由。

∵ ∠1 +∠2=180°, ∠3 +∠4=180°

∴ ∠2=180°-∠1 , ∠4=180°- ∠3

∵ ∠1 =∠3

∴ 180°-∠1 =180°- ∠3

即:∠2 =∠4

8、探究余角的性质:

如图∠1 与∠2互余,∠3 与∠4互余 ,如果∠1=∠3,那么∠2与∠4相等吗?为什么?

教师活动:操作多媒体演示。

学生活动:观察图形的运动,得出结果:∠2=∠4

余角性质:同角或等角的余角相等

教师活动:向学生说明,以上从观察图形得到的结论,还可以从理论上说明其理由。

∵ ∠1 +∠2=90°, ∠3 +∠4=90°

∴ ∠2=90°-∠1 , ∠4=90°- ∠3

∵ ∠1 =∠3

∴ 90°-∠1 =90°- ∠3

即:∠2 =∠4

9、讲解例题:

例2:如图,∠AOB=90°,∠COD=∠EOD=90°,C,O,E在一条直线上,且∠2=∠4,请说出∠1与∠3之间的关系?并试着说明理由?

解:∠1=∠3

∵ ∠1+∠2= ∠COD=90°

∠3+∠2= ∠AOB=90°

∴ ∠1=∠3 (等角的余角相等)

10、练习⑷:

如图∠AOB = 90 °,∠COD = 90 °则∠1与∠2是什么关系?

11、讲解方位角:

(1)认识方位:

正东、正南、正西、正北、东南、

西南、西北、东北。

(2)找方位角:

ⅰ乙地对甲地的方位角 ⅱ甲地对乙地的方位角

12、讲解例题:

例3:选择题:

(1)A看B的方向是北偏东21°,那么B看A的方向( )

A:南偏东69° B:南偏西69° C:南偏东21° D:南偏西21°

(2)如图,下列说法中错误的是( )

A: OC的方向是北偏东60°

B: OC的方向是南偏东60°

C: OB的方向是西南方向

D: OA的方向是北偏西22°

(3)在点O 北偏西60°的某处有一点A,在点O南偏西20°的某处有一点B,则∠AOB的度数是( )

A:100° B:70° C:180° D:140°

例4:如图.货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上又分别发现了客轮B,货轮C和海岛D.仿照表示灯塔方位的方法画出表示客轮B,货轮C和海岛D方向的射线.

三、课堂小结:

1、本节课学习了余角和补角,并通过简单的推理,得到出了余角和补角的性质。

2、了解方位角,学会了确定物体运动的方向。

四、课外作业:

1、课本第114页:9、11、12题。

2、学习指要第78-79页:训练二和训练三。

课后反思:

相关推荐:

具有相反意义的量学案

有理数的加法与减法3

更多初一数学教案请关注精品学习网  

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。