您当前所在位置:首页 > 初中 > 初一 > 数学 > 初一数学教案

七年级上2.3绝对值教案

编辑:sx_liuwy

2012-12-06

 以下是精品学习网为您推荐的 七年级上2.3绝对值教案( ,希望本篇文章对您学习有所帮助。

七年级上2.3绝对值教案(北京课改版)

教学目标:

通过数轴,使学生理解绝对值的概念及表示方法

1、 理解绝对值的意义,会求一个数的绝对值及进行有关的简单计算

2、 通过绝对值概念、意义的探讨,渗透数形结合、分类讨论等数学思想方法

3、 通过学生合作交流、探索发现、自主学习的过程,提高分析、解决问题的能力

教学重点:

理解绝对值的概念、意义,会求一个数的绝对值

教学难点:

绝对值的概念、意义及应用

教学方法:

探索自主发现法,启发引导法

设计理念:

绝对值的意义,在初中阶段是一个难点,要理解绝对值这一抽象概念的途径就是把它具体化,从学生生活周围熟悉的事物入手,借助数轴,使学生理解绝对值的几何意义 .通过“想一想”,“议一议”,“做一做”,“试一试”,“练一练”等,让学生在观察、思考,合作交流中,经历和体验绝对值概念的形成过程,充分发挥学生在教学活动中的主体地位,从而逐步渗透数形结合、分类讨论等数学思想方法,提高学生分析、解决问题的能力.

教学过程:

一、 创设情境,复习导入

1.今天我们来学习一个重要而很实际的数学概念,提高我们的数学本领,先请大家看屏幕,思考并解答题中的问题.(用多媒体出示引例)

星期天张老师从学校出发,开车去游玩,她先向东行20千米,到了游乐园,下午她又向西行30千米,回到家中(学校、游乐园、家在同一直线上),如果规定向东为正,①用有理数表示张老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?

① +20千米,-30千米; ②(20+30)×0.15=7.5升

2.在学生讨论的基础上,教师指出:这个例子涉及两个问题,第一问中的向东和向西是相反

意义的量,用正负数表示,第二问是计算汽车的耗油量,因为汽车的耗油量只与行驶的

路程有关,而与行驶的方向没有关系,所以没有负数.这说明在实际生活中,有些问题

中的量,我们并不关注它们所代表的意义,只要知道具体数值就行了.你还能举出其他

类似的例子吗?

3.小组讨论,有的同学在思考,有的在交流,有些例子被否定,有的得到同伴的赞许, 气氛热烈.教师巡视,偶尔参加其中一组的讨论,但不直接肯定或否定学生的问题,而是引导鼓励学生思考、交流,请各小组派代表汇报讨论结果.

我们小组举的例子是:我爸爸喜欢炒股,一天他支出10 000元购买A股票,同一天他又抛出B股票收入15 000元,规定支出为负,那么爸爸两次的交易额用有理数如何表示?如果交易所每次交易按总额的千分之一收费,那么爸爸的这两次交易需交多少交易费?

4.在实际生活中存在不关注相反意义的例子,刚才我们所举例子中的计算,都不必考虑它们的正、负性,看来我们的确很有必要给上面涉及的量取一个名字.我们把这个量叫做有理数的绝对值.

二、 合作交流、探索新知

1. 绝对值的概念

⑴ 如图,在数轴上,+3和-3虽然符号不同,但表示这两个数的点到原点的距离都是3,

我们把这个距离叫做+3和-3 的绝对值.

+3的绝对值就是数轴上表示+3的点到原点的距离,+3的绝对值是3,记作: =3

-3的绝对值就是数轴上表示-3的点到原点的距离, -3的绝对值是3,记作: =3

⑵ 一个数a的绝对值是数轴上表示数a的点到原点的距离, 数a的绝对值,记作:

2. 探索绝对值意义

⑴ 学生探索:求6,-6, ,- ,2.5,-2.5的绝对值

小组讨论:互为相反数的两个数的绝对值有什么关系?

规律总结:互为相反数的两个数的绝对值相等

⑵ 学生抢答:

学生小组讨论得出:

一个正数的绝对值是它的本身. 即:若a>0,则 =a

一个负数的绝对值是它的相反数. 即:若a<0,则 =-a

0的绝对值是0 . 即:若a=0,则 =0

(3)学生活动:

在数轴上自己标出五个数,让同桌指出它们的绝对值,引导学生观察,讨论得出:

任何一个数的绝对值都是非负数(正数和0). ≥0

= =

三、 举一反三,灵活应用

例1.求下列各数的绝对值:-4,-1 ,0,+2,+3

解: ;   ;   ;

; .

注:通过此题,复习巩固绝对值的概念,表示法,意义

例2,计算

①       ②

解: 原式=5-3.4-0+1.9       解: 原式=

=3.5                  =0

注:通过此题,复习巩固绝对值的意义

例3.求出绝对值是12, ,0的有理数

解: ① ∵

∴绝对值是12的有理数是±12

② ∵

绝对值是 的有理数是±

③∵

∴绝对值是0的有理数是0

小结:绝对值等于一个正数的数有两个,它们互为相反数;

绝对值等于0的数有一个,是0;

没有绝对值等于负数的数,绝对值是个非负数. ≥0

四、达标反馈

1. 填空

(1) 数轴上离开原点2个单位长的点所表示的数是___

(2) 数轴上到原点的距离等于1.5的点所表示的数是 ______

(3) 正数的绝对值是_________,负数的绝对值是___________, 零的绝对值是______

(4) 从数轴上看,一个数的绝对值就是表示这个数离开原点的________

(5) 49是______的相反数,它是_______的绝对值

(6) 如果一个数的绝对值等于 ,那么这个数是________

(7) 绝对值小于3的整数有___,它们的和为___

(8) 若 =0,则a_____0

2.选择题

⑴ - 是一个

A.正数 B.负数 C.正数或零 D.负数或零

⑵ 如果一个数的绝对值是5.2 ,那么这个数是

A.5.2 B.一5.2 C.5.2或-5.2 D.以上都不对

⑶ 任何有理数的绝对值都是

A.正数 B.负数 C.有理数 D.正数或零

⑷ 一个数的绝对值是它本身,那么这个数是

A.正数 B.正数或零 C.零 D.有理数

五、学习小结:

1、 绝对值的概念、意义

① 数轴上的点到原点的距离叫做这个点表示的有理数的绝对值

② 正数的绝对值是它的本身

负数的绝对值是它的相反数

0的绝对值是0

③ = =

④ 绝对值是非负数 ≥0

⑤ 有理数可理解为由性质符号和绝对值组成

⑥ 互为相反数的两个数可理解为符号相反、绝对值相同的两个数

2、 学会发现、探索、合作交流,体会数形结合,分类讨论等数学思想方法

六、设计理念:

绝对值的意义,在初中阶段是一个难点,要理解绝对值这一抽象概念的途径就是把它具体化,从学生生活周围熟悉的事物入手,借助数轴,使学生理解绝对值的几何意义.通过“想一想”,“议一议”,“做一做”,“试一试”,“练一练”等,让学生在观察、思考,合作交流中,经历和体验绝对值概念的形成过程,充分发挥学生在教学活动中的主体地位,从而逐步渗透数形结合、分类讨论等数学思想方法,提高学生分析、解决问题的能力.

相关推荐:

具有相反意义的量学案

有理数的加法与减法3

更多初一数学教案请关注精品学习网  

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。