编辑:sx_liuwy
2012-12-10
以下是精品学习网为您推荐的探索平行线的性质教案,希望本篇文章对您学习有所帮助。
探索平行线的性质
教学目标掌握平行线的性质。
运用平行线的性质及判定方法解决问题
重 点三条性质的推导
运用平行线的性质及判定方法解决问题
难 点运用平行线的性质及判定方法解决问题时的过程
教学方法讲练结合、探索交流课型新授课教具投影仪
教 师 活 动学 生 活 动
情景设置:
1在练习本上画两条平行线AB、CD,再画直线MN与直线AB、CD相交如图 M
A 3 1 B
7 5
C 4 2 D
8 6
N
指出图中的同位角、内错角、同旁内角。
2将图剪成(1)(2)(3)(4)所示的四块。分别把图中的同位角、内错角重叠你会发现什么?
A 3 1 B (1)
A 7 5 B
C 4 2 D
(2) (3)
C 8 6 D
(4)
3将图(2)、 (3)分别剪成两部分,并按图中所示拼在一起,你发现每对同旁内角有什么关系?
7 4
7
4
5 2
5
2
由上可知
两直线平行,同位角相等
两直线平行,内错角相等
两直线平行,同旁内角互补
新课讲解:
议一议
你能根据“两直线平行,内错角相等”,说明“两直线平行,内错角相等”成立的理由吗? C
1 a
如图 3
因为a∥b, 2 b
所以∠1=∠2,
又因为∠1与∠3是对顶角,∠1=∠3,所以∠2=∠3。
类似地,请根据“两直线平行,同位角相等”,说明“两直线平行,同旁内角互补”成立的理由,并与学生交流。
例题1:
如图,AD∥BC,∠A=∠C试说明AB∥DC A D E
解:因为AD∥BC
所以∠C=∠CDE
又因为∠A=∠C F B C
所以∠A=∠CDE
根据“同位角相等,两直线平行:,
可以知道AB∥DC
练习:第14页练一练第1、2题
小结: 内错角相等
平行 同位角相等
同旁内角互补
教学素材:
A组题:
(1)在图中a∥b,计算∠1的度数分别为 , , 。
(2)如图若AB∥EF,BC∥DE,则∠E+∠B=
a 36° A F
b 1 1 1 B C
120° D E
B组题:
(1) 已知,如图,a∥b,c∥d, a b
∠1=48°,求∠2,∠3, 1 4
∠4的度数。 2 3
(2)如图,已知AB∥CD,∠B=120°,∠D=130°,求∠BDE的度数。
A B
F 1 E
2
C D
(2)
学生回答
由学生自己先做(或互相讨论),然后回答,若有答不全的,教师(或其他学生)补充.
学生板演
作业第14页第1、2、3、4、题(5选做)
板 书 设 计
复习 例1 板演
…… …… ……
…… …… ……
…… 例2 ……
…… …… ……
…… …… ……
教 学 后 记
相关推荐:
更多初一数学教案请关注精品学习网
标签:初一数学教案
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。