您当前所在位置:首页 > 初中 > 初一 > 数学 > 初一数学教案

七年级数学合并同类项说课稿37教案

编辑:sx_liuwy

2012-12-14

 以下是精品学习网为您推荐的七年级数学合并同类项说课稿37教案,希望本篇文章对您学习有所帮助。

七年级数学合并同类项说课稿37

一、教材分析:

1、教材所处的地位及作用:

本节课选自新人教版数学七年级上册§2.2节,是学生进入初中阶段后,在学习了用字母表示数,单项式、多项式以及有理数运算的基础上,对同类项进行合并、探索、研究的一个课题。合并同类项是本章的一个重点,其法则的应用是整式加减的基础,也是以后学习解方程、解不等式的基础。另一方面,这节课与前面所学的知识有千丝万缕的联系:合并同类项的法则是建立在数的运算的基础之上;在合并同类项过程中,要不断运用数的运算。可以说合并同类项是有理数加减运算的延伸与拓广。因此,这节课是一节承上启下的课。

2、 情分析:

七年级学生刚刚跨入少年期,理性思维的发展还有很有限,他们在身体发育、知识经验、心理品质方面,依然保留着小学生的天真活泼、对新生事物很感兴趣、求知欲望强、具有强烈的好奇心与求知欲,形象直观思维已比较成熟,但抽象思维能力还比较薄弱。于是我根据学生和中小学教材衔接的特点设计了这节课。

二、教学目标:

1.知识目标:

(1)使学生理解多项式中同类项的概念,会识别同类项。

(2)使学生掌握合并同类项法则。

(3)利用合并同类项法则来化简整式。

2.能力目标:

(1)、在具体的情景中,通过观察、比较、交流等活动认识同类项,了解数学分类的思想;

并且能在多项式中准确判断出同类项。

(2)、在具体情景中,通过探究、交流、反思等活动获得合并同类项的法则,体验探求规律的思想方法;并熟练运用法则进行合并同类项的运算,体验化繁为简的数学思想。

3.过程与方法:组织学生参与学习、讨论,在合作探究活动中获取知识。

4.情感态度与价值观:激发学生的求知欲,培养独立思考和合作交流的能力,让他们享受成功的喜悦。

三、教学重点、难点:

根据学生的认知水平、认知能力以及教材的特点,确定以下重、难点:

重点:同类项的概念、合并同类项的法则及应用。

难点:正确判断同类项;准确合并同类项。

四、教学方法与教学手段:

(1) 教法分析:

基于本节课内容的特点和七年级学生的心理特征,我在教学中选择互助式学习模式,与学生建立平等融洽的关系,营造自主探索与合作交流的氛围,共同在实验、演示、操作、观察、练习等活动中运用多媒体来提高教学效率,验证结论,激发学生学习的兴趣。 (2) 学法分析:

教学过程是师生互相交流的过程,教师起引导作用,学生在教师的启发下充分发挥主体性作用。七年级的学生,从认知的特点来看,学生爱问好动、求知欲强,想象力丰富,对实际操作活动有着浓厚的兴趣,对直观的事物感知欲较强,是形象思维向抽象思维逐步过渡的阶段,他们希望得到充分的展示和表现,因此,在学习上,应充分发挥学生在教学中的主体能动作用,让学生自己通过观察、类比、活动、猜想、验证、归纳,共同探讨,进行小组间的讨论和交流、利用课件和实物自主探索等方式,激发学习兴趣,培养应用意识和发散思维。

五、教学过程:

程教学

环节教学设计设计意图

新1. —5+3= , 4—2= .

2. —2 ab 的系数 是次数是

3. 组成多项式2x y-3 xy2+1的项分别为 , , .

4. 30米+50米= . 复习旧知识,为新知识作铺垫,激发学生的求知欲

一问题1:

我们到动物园参观时,发现老虎与老虎关在一个笼子里,熊猫与熊猫关在另一个笼子里。为何不把老虎与熊猫关在同一个笼子里呢?

问题2:

(1)在日常生活中,你发现还有哪些事物也需要分类?能举出例子吗?如:垃圾、零钱、水果及各种产品分类.

(2)生活中处处有分类的问题,在数学中也有分类的问题吗?目的在于引发和提高学生学习的积极性,启发学生的探索欲望,加强学科联系,并注意联系生活,同时为本课学习做好准备和铺垫。

念议一议:

10a和20a 2b2 和 6b2 -9xy和 5xy 5ab 和 -13ab 有什么共同点?

2.思考:归为同类需要有什么共同的特征?(引导学生看书,让学生理解同类项的定义)

让学生充分发挥主体作用,从自己的视点去观察、归纳、总结得出同类项的概念。

念 1、“真真假假”下列每组式子分别是同类项吗?为什么?

(1) x与y; (2)a b与ab ;-3pq与3pq;

(4)abc与aca 与a ;(5)a b与a bc;

2、K取何值时,-3 x y与-x y是同类项?

3、 填充: (1)在( )内填上相应字母,使得2( )3( )2与-x2y3是同类项;

(2)若 和 是同类项,则 = ;使学生牢固掌握同类项的知识,进一步加强对同类项概念的理解。增强应用意识,培养学生的发散思维。

如果一个多项式中含有同类项,那么常常把同类项合并起来,使结果得到简化,那么怎样才能把同类项合并起来呢?请同学们思考下面的问题?以生活实例为切入点,通过对简单的、熟悉的数量运算,激发学生学习合并同类项的欲望,从而较自然的引入新课题。

练问题1:

3ab+5ab=_______理由是________

-4xy2+2xy2=_______ 理由是_______

-3a+2b= 理由是_______

问题2:

不在一起的同类项能否将同类项结合在一起?为什么?

例如:6xy-10x2-5yx+7x2

运用加法交换律和结合律将同类项结合在一起,原多项式的值不变。

合并同类项:

把同类项合并成一项就叫做合并同类项

法则:

(1)系数:各项系数相加作为新的系数

(2)字母以及字母的指数不变。

合并同类项一般步骤:

6xy-10x2-5yx+7x2 ——— 找

=(6xy-5yx)+( -10x2+7x2)——— 移

= (6-5)xy+ (-10+7)x2 ——— 并

=xy-3x2

尝试训练一:

(1) 3x-8x-9x

(2) 5a2+2ab-4a2-4ab

(3) 2x-7y-5x+11y-1

尝试练习二:

当x=2,y=3时

求多项式                    的值。

对比计算:同桌采用两种不同的方法来计算,以得出较优化的方法——先化简,再求值。

例题:已知a= , b=4,

求多项式2a2b-3a-3a2b+2a 的值.分解难度,设计过渡问题,使学生能自然的感受法则的探索过程。

以一道例题的训练为桥梁来得出合并同类项的一般步骤。体现新课程中以学生为主,注重学生参与的理念。

小组共练互批,及时纠错,共同提高。

求多项式的值,常常先合并同类项,化简后再求值,这样比较简便。

程数

课堂小结

业数学与生活:

某住宅的平面结构如图所示 (墙体厚度不计,单位:米)

(1)该住宅的使用面积是多少平方米?

(2)房的主人计划把住宅的地面都铺上地砖,若选用的地砖的价格是30元/平方米,其中x=4,y=3那么买地砖至少需要多少元?

谈一谈:通过本课的学习你有何收获?

课堂感悟:

1、什么叫合并同类项?

把多项式中的同类项合并成一项,叫合并同类项

2、合并同类项的法则是什么?

把同类项的系数相加,所得结果作为系数,字母和字母的指数不变

必做题:

1、在下列代数式中,指出哪些是同类项。 2x2 ,0 ,-3x ,-x2y ,(x+y)2 ,xy2, x2y ,6x ,-x2y , 0.5 , -x2 ,2(x+y)2 ;

2、合并同类项

①3y+2y  ②3b-3a3+1+a3-2b

③2y+6y+2xy-5   ④6mn+4m2n-3mn+5mn2

3、填充: (1)在( )内填上相应字母,使得2( )3( )2与5x2y3是同类项; (2)若x3ym和xny2是同类项,则 = ; (3)若(n-3)x2yz和x2yz是同类项,则 ;

选做题:你会玩下面的两个数字游戏吗?游戏步骤:任写一个两位数 交换十位和个位数,得到一个新两位数 求这两个两位数的和。做完后观察结果,你发现了什么?这个规律对任何一个两位数都成立吗?如果成立,如何说明呢?你能自编一个数学游戏吗?这个游戏有什么特点?与同伴一起玩这个游戏。通过对熟悉的事物,让学生感受到数学就在身边,激发学生想象力,启迪创新,应用意识。

小组讨论

进一步让学生巩固基本知识,渗透数学分类思想;使知识结构更完善。

必做题进一步巩固学生所学知识,及时发现和弥补知识缺陷,起到课后巩固和反馈作用。在第二项作业中利用游戏为下面的学习埋下了伏笔,这样就可以激发学生想象力,启迪创新,应用意识。

附教学流程图:

教学流程:

创设情境1

形成概念

强化概念

创设情境2

层层追问

引出法则

合并同类

项的步骤

布置作业

数学在生活

中的应用

巩固法则

尝试训练

课堂小结

温故而知新

相关推荐:

具有相反意义的量学案

有理数的加法与减法3

更多初一数学教案请关注精品学习网  

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。