您当前所在位置:首页 > 初中 > 初一 > 数学 > 初一数学教案

同底数幂的乘法(一)教案

编辑:sx_liuwy

2012-12-26

 以下是精品学习网为您推荐的同底数幂的乘法(一)教案,希望本篇文章对您学习有所帮助。

同底数幂的乘法(一)

教学目标:

1.使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算;

2.在推导“性质”的过程中,培养学生观察、概括与抽象的能力.

教学重点和难点:幂的运算性质.

课堂教学过程设计:

一、运用实例 导入新课

引例 一个长方形鱼池的长比宽多2米,如果鱼池的长和宽分别增加3米,那么这个鱼池的面积将增加39平方米,问这个鱼池原来的长和宽各是多少米?

学生解答,教师巡视,然后提问:这个问题我们可以通过列方程求解,同学们在什么地方有问题?

要解方程(x+3)(x+5)=x(x+2)+39必须将(x+3)(x+5)、x(x+2)展开,然后才能通过合并同类项对方程进行整理,这里需要用到整式的乘法.(写出课题:第七章 整式的乘除)

本章共有三个单元,整式的乘法、乘法公式、整式的除法.这与前面学过的整式的加减法一起,称为整式的四则运算.学习这些知识,可将复杂的式子化简,为解更复杂的方程和解其它问题做好准备.

为了学习整式的乘法,首先必须学习幂的运算性质.(板书课题:7.1 同底数幂的乘法)在此我们先复习乘方、幂的意义.

二、复习提问

1.乘方的意义.

2.指出下列各式的底数与指数:

(1)34;(2)a3;(3)(a+b)2;(4)(-2)3;(5)-23.

其中,(-2)3与-23的含义是否相同?结果是否相等?(-2)4与-24呢?

三、讲授新课

1.利用乘方的意义,提问学生,引出法则

计算103×102.

解:103×102=(10×10×10)×(10×10)(幂的意义)

=10×10×10×10×10(乘法的结合律)

=105.

2.引导学生建立幂的运算法则

将上题中的底数改为a,则有

a3·a2=(aaa)·(aa)

=aaaaa

=a5,

即 a3·a2=a5=a3+2.

用字母m,n表示正整数,则有am·an=am+n.

3.引导学生剖析法则

(1)等号左边是什么运算?(2)等号两边的底数有什么关系?

(3)等号两边的指数有什么关系?(4)公式中的底数a可以表示什么

(5)当三个以上同底数幂相乘时,上述法则是否成立?

要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.

四、应用举例 变式练习

例1 计算:(1)107×104; (2)x2·x5.

解:(1)107×104=107+4=1011; (2)x2·x5=x2+5=x7.

提问学生是否是同底数幂的乘法,要求学生计算时重复法则的语言叙述.

例2 计算:(1)-a2·a6;  (2)(-x)·(-x)3;  (3)ym·ym+1.

解:(1)-a2·a6=-(a2·a6)=-a2+6=-a8;

(2)(-x)·(-x)3=(-x)1+3=(-x)4=x4;

(3)ym·ym+1=ym+(m+1)=y2m+1.

师生共同解答,教师板演,并提醒学生注意:(1)中-a2与(-a)2的差别;(3)中的指数有字母,计算方法与数字相同,计算后指数要合并同类项.(2)中(-x)4=x4学生如不理解,可先引导学生回忆学过的有理数的乘方.

五、课堂练习

计算:(1)105·106; (2)a7·a3; (3)y3·y2;

(4)b5·b; (5)a6·a6; (6)x5·x5.

对于第(2)小题,要指出y的指数是1,不能忽略.

计算:(1)y12·y6; (2)x10·x; (3)x3·x9;

(4)10·102·104; (5)y4·y3·y2·y; (6)x5·x6·x3.

(1)-b3·b3; (2)-a·(-a)3;

(3)(-a)2·(-a)3·(-a); (4)(-x)·x2·(-x)4.

六、小结

1.同底数幂相乘,底数不变,指数相加,对这个法则要注重理解“同底、相乘、不变、相加”这八个字.

2.解题时要注意a的指数是1.

3.解题时,是什么运算就应用什么法则.同底数幂相乘,就应用同底数幂的乘法法则;整式加减就要合并同类项,不能混淆.

4.-a2的底数a,不是-a.计算-a2·a2的结果是-(a2·a2)=-a4,而不是(-a)2+2=a4.

5.若底数是多项式时,要把底数看成一个整体进行计算

教后记:

教学时不要生硬地提出问题,应力求顺乎自然、水到渠成.讲课要注意联系过去尚不甚巩固的知识,将新旧知识有机地融合在一起.这节课就是以此为宗旨引入新课的.

相关推荐:

具有相反意义的量学案

有理数的加法与减法3

更多初一数学教案请关注精品学习网  

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。