您当前所在位置:首页 > 初中 > 初一 > 数学 > 初一数学教案

6.1.1有序数对教案

编辑:sx_liuwy

2012-12-28

 以下是精品学习网为您推荐的6.1.1有序数对教案,希望本篇文章对您学习有所帮助。

6.1.1有序数对

[教学目标]

理解有序数对的应用意义,了解平面上确定点的常用方法

培养学生用数学的意识,激发学生的学习兴趣.

[教学重点与难点]

重点:有序数对及平面内确定点的方法.

难点:利用有序数对表示平面内的点.

[教学设计]

[设计说明] 一.问题探知

1.一位居民打电话给供电部门:“卫星路第8根电线杆

的路灯坏了,”维修人员很快修好了路灯同学们欣赏下面图案.

2.地质部门在某地埋下一个标志桩,上面写着“北纬44.2°,东经125.7°”。

3.某人买了一张8排6号的电影票,很快找到了自己的座位。

分析以上情景,他们分别利用那些数据找到位置的。

你能举出生活中利用数据表示位置的例子吗?

二.概念确定

有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对(ordered pair),记作(a,b)

利用有序数对,可以很准确地表示出一个位置。

与3大道例1 如图,点A表示3街与5大道的十字路口,点B表示5街与3大道的十字路口,如果用(3,5)(4,5)→(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那么你能用同样的方法写出由A到B的其他几条路径吗?

6大道

5大道

4大道 A

3大道 B

2大道

1大道 1街 2街 3街 4街 5街 6街

分析:图中确定点用前一个数表示大街,后一个数表示大道。

解:其他的路径可以是:

(3,5)→(4,5)→(4,4)→(5,4)→(5,3);

(3,5)→(4,5)→(4,4)→(4,3)→(5,3);

(3,5)→(3,4)→(4,4)→(5,4)→(5,3);

(3,5)→(3,4)→(4,4)→(4,3)→(5,3);

(3,5)→(3,4)→(3,3)→(4,3)→(5,3);

根据描述的情景找出表示地点的数量

学生举例说明生活中的类似确定点的我位置的例子

明确数对的表示含义和格式

寻找规律确定路线

1.在教室里,根据座位图,确定数学课代表的位置

2.教材46页练习

三.方法归类

常见的确定平面上的点位置常用的方法

(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。

(2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。

1.如图,A点为原点(0,0),则B点记为(3,1

?

2.如图,以灯塔A为观测点,小岛B在灯塔A北偏东45,距灯塔3km 处。

例2 如图是某次海战中敌我双方舰艇对峙示意图

,对我方舰艇来说:

(1)北偏东方向上有哪些目标?要想确定敌舰B的位置,还需要什么数据?

(2)距我方潜艇图上距离为1cm处的敌舰有哪几艘?

(3)要确定每艘敌舰的位置,各需要几个数据?

[巩固练习]

如图是某城市市区的一部分示意图,对市政府来说:

北偏东60的方向有哪些单位?要想确定单位的位置。还需要哪些数据?

火车站与学校分别位于市政府的什么方向,怎样确

结合实际问题归纳方法

学生尝试描述位置

定他们的位置?

如图,马所处的位置为(2,3).

你能表示出象的位置吗?

写出马的下一步可以到达的位置。

[小结]

为什么要用有序数对表示点的位置,没有顺序可以吗?

几种常用的表示点位置的方法.

[作业]

必做题:教科书49页:1题

仿照前面方法确定位置关系

可以变化出其他的象棋盘上的位置,也可以引申到围棋盘或其他棋类。

6.1.2平面直角坐标系

[教学目标]

认识平面直角坐标系,了解点的坐标的意义,会用坐标表示点,能画出点的坐标位

渗透对应关系,提高学生的数感.

[教学重点与难点]

重点:平面直角坐标系和点的坐标.

难点:正确画坐标和找对应点.

[教学设计]

[设计说明] 一.利用已有知识,引入

1.如图,怎样说明数轴上点A和点B的位置,

2.根据下图,你能正确说出各个象棋子的位置吗?

二.明确概念

平面直角坐标系:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系(rectangular coordinate system).水平的数轴称为x轴(x-axis)或横轴,习惯上取向右为正方向;竖直的数轴为y轴(y-axis)或纵轴,取向上方向为

由数轴的表示引入,到两个数轴和有序数对。

从学生熟悉的物品入手,引申到平面直角坐标系。

描述平面直角坐标系特征和画法

正方向;两个坐标轴的交点为平面直角坐标系的原点。

点的坐标:我们用一对有序数对表示平面上的点,这对数叫坐标。表示方法为(a,b).a是点对应横轴上的数值,b是点在纵轴上对应的数值。

例1 写出图中A、B、C、D点的坐标。

建立平面直角坐标系后,平面被坐标轴分成四部分,分别叫第一象限,第二象限,第三象限和第四象限。

你能说出例1中各点在第几象限吗?

例2 在平面直角坐标系中描出下列各点。

()A(3,4);B(-1,2);C(-3,-2);D(2,-2)

问题1:各象限点的坐标有什么特征?

练习:教材49页:练习1,2。

三.深入探索

教材48页:探索:

识别坐标和点的位置关系,以及由坐标判断两点的关系以及两点所确定的直线的位置关系。

[巩固练习]

教材49页习题6.1——第1题

教材50页——第2,4,5,6。

[小结]

平面直角坐标系;

点的坐标及其表示

各象限内点的坐标的特征

坐标的简单应用

[作业]

必做题:教科书50页:3题

(教材51页综合运用7,8,9,10为练习课内容)

明确点的坐标的表示法

仿照例题,画坐标轴,描点,要求能正确画平面直角坐标系

通过探究,发现坐标不但能代表点的位置,而且能反映他所在的直线的特征

相关推荐:

具有相反意义的量学案

有理数的加法与减法3

更多初一数学教案请关注精品学习网  

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。