您当前所在位置:首页 > 初中 > 初一 > 数学 > 初一数学教案

新人教版七年级上 1.2.3相反数

编辑:sx_liuwy

2013-01-06

 以下是精品学习网为您推荐的 新人教版七年级上 1.2.3相反数 ,希望本篇文章对您学习有所帮助。

新人教版七年级上 1.2.3相反数

[教学目标]

1. 借助数轴,使学生了解相反数的概念 2. 会求一个有理数的相反数 3. 激发学生学习数学的兴趣. [教学重点与难点]

重点: 理解相反数的意义难点: 理解相反数的意义

[教学设计]

提问

1、 数轴的三要素是什么?

2、 填空:

数轴上与原点的距离是2的点有 个,这些点表示的数是 ;与原点的距离是5的点有 个,这些点表示的数是 。

新课

相反数的概念:

只有符号不同的两个数,我们称它们互为相反数,零的相反数是零。

概念的理解:

(1) 互为相反数的两个数分别在原点的两旁,且到原点的距离相等。

(2) 一般地,数a的相反数是 , 不一定是负数。

(3) 在一个数的前面添上“-”号,就表示这个数的相反数,如:-3是3的相反数,-a是a的相反数,因此,当a是负数时,-a是一个正数

-(-3)是(-3)的相反数,所以-(-3)=3,于是

(4) 互为相反数的两个数之和是0

即如果x与y互为相反数,那么x+y=0;反之,若x+y=0, 则x与y互为相反数

(5) 相反数是指两个数之间的一种特殊的关系,而不是指一个种类。如:“-3是一个相反数”这句话是不对的。

例1 求下列各数的相反数:

(1)-5 (2) (3)0

(4) (5)-2b (6) a-b

(7) a+2

例2 判断:

(1)-2是相反数

(2)-3和+3都是相反数

(3)-3是3的相反数

(4)-3与+3互为相反数

(5)+3是-3的相反数

(6)一个数的相反数不可能是它本身

例3 化简下列各数中的符号:

(1) (2)-(+5)

(3) (4)

例4 填空:

(1)a-4的相反数是 ,3-x的相反数是 。

(2) 是 的相反数。

(3)如果-a=-9,那么-a的相反数是 。

例5 填空:

(1)若-(a-5)是负数,则a-5 0.

(2) 若 是负数,则x+y 0.

例6 已知a、b在数轴上的位置如图所示。

(1) 在数轴上作出它们的相反数;

(2) 用“<”按从小到大的顺序将这四个数连接起来。

例7 如果a-5与a互为相反数,求a.

练习:教材14页

小节:相反数的概念及注意事项

作业:18页第3题

课题: 1.2.3 相反数

教学目标1, 掌握相反数的概念,进一步理解数轴上的点与数的对应关系;

2, 通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;

3, 体验数形结合的思想。

教学难点归纳相反数在数轴上表示的点的特征

知识重点相反数的概念

教学过程(师生活动)设计理念

设置情境

引入课题问题1:请将下列4个数分成两类,并说出为什么要这样分类

4, -2,-5,+2

允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。

(引导学生观察与原点的距离)

思考结论:教科书第13页的思考

再换2个类似的数试一试。

归纳结论:教科书第13页的归纳。以开放的形式创设情境,以学生进行讨论,并培养分类的能力

培养学生的观察与归纳能力,渗透数形思想

深化主题提炼定义给出相反数的定义

问题2:你怎样理解相反数定义中的“只有符号不同”和“互为”一词的含义?零的相反数是什么?为什么?

学生思考讨论交流,教师归纳总结。

规律:一般地,数a的相反数可以表示为-a

思考:数轴上表示相反数的两个点和原点有什么关系?

练一练:教科书第14页第一个练习体验对称的图形的特点,为相反数在数轴上的特征做准备。

深化相反数的概念;“零的相反数是零”是相反数定义的一部分。

强化互为相反数的数在数轴上表示的点的几何意义

给出规律

解决问题问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?

学生交流。

分别表示+5和-5的相反数是-5和+5

练一练:教科书第14页第二个练习利用相反数的概念得出求一个数的相反数的方法

小结与作业

课堂小结1, 相反数的定义

2, 互为相反数的数在数轴上表示的点的特征

3, 怎样求一个数的相反数?怎样表示一个数的相反数?

本课作业1, 必做题 教科书第18页习题1.2第3题

2, 选做题 教师自行安排

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1、相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想.

2、教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法.

3、本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地.

相关推荐:

具有相反意义的量学案

有理数的加法与减法3

更多初一数学教案请关注精品学习网  

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。