编辑:
2016-01-13
14.(2014•怀化)计算:(﹣1)2014= 1 .
考点: 有理数的乘方.
分析: 根据(﹣1)的偶数次幂等于1解答.
解答: 解:(﹣1)2014=1.
故答案为:1.
点评: 本题考查了有理数的乘方,﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.
三.解答题(共11小题)
15.(2005•宿迁)计算:(﹣2)2﹣|﹣7|+3﹣2×(﹣ ).
考点: 有理数的混合运算.
分析: 含有有理数的加、减、乘、除、乘方多种运算的算式.根据几种运算的法则可知:减法、除法可以转化成加法和乘法,乘方是利用乘法法则来定义的,所以有理数混合运算的关键是加法和乘法.加法和乘法的法则都包括符号和绝对值两部分,同学在计算中要学会正确确定结果的符号,再进行绝对值的运算.
解答: 解:原式=4﹣7+3+1=1.
点评: 注意:(1)要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.
(2)在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.
16.(2014秋•吉林校级期末)计算:(﹣ ﹣ + )÷(﹣ )
考点: 有理数的除法.
分析: 将除法变为乘法,再根据乘法分配律计算即可求解.
解答: 解:原式=(﹣ ﹣ + )×(﹣36)
=﹣ ×(﹣36)﹣ ×(﹣36)+ ×(﹣36)
=27+20﹣21
=26.
点评: 此题考查有理数的混合运算,掌握运算顺序,正确判定运算符号计算即可.
17.(2014•石景山区二模)已知当x=1时,2ax2+bx的值为﹣2,求当x=2时,ax2+bx的值.
考点: 代数式求值.
专题: 整体思想.
分析: 把x=1代入代数式求出a、b的关系式,再把x=2代入代数式整理即可得解.
解答: 解:将x=1代入2ax2+bx=﹣2中,
得2a+b=﹣2,
当x=2时,ax2+bx=4a+2b,
=2(2a+b),
=2×(﹣2),
=﹣4.
点评: 本题考查了代数式求值,整体思想的利用是解题的关键.
18.(2014秋•吉林校级期末)出租车司机小张某天上午的营运全是东西走向的路线,假定向东为正,向西为负,他这天上午行车里程如下:(单位:km)+12,﹣4,+15,﹣13,+10,+6,﹣22.求:
(1)小张在送第几位乘客时行车里程最远?
(2)若汽车耗油0.1L/km,这天上午汽车共耗油多少升?
考点: 正数和负数.
分析: (1)根据绝对值的性质,可得行车距离,根据绝对值的大小,可得答案;
(2)根据行车的总路程乘以单位耗油量,可得答案.
解答: 解:(1)∵|﹣22|>|15|>|﹣13|>|12|>|10|>|6|>|﹣4|,
∴小张在送第七位乘客时行车里程最远;
标签:数学试卷
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。