您当前所在位置:首页 > 初中 > 教案 > 初二教案 > 数学教案

初二数学教案之四边形教学设计

编辑:sx_bilj

2014-02-10

教案是教师对一节课的整体设想,创造性的教学设计,严谨、科学、有序的教学策略,能够有效的提高教学效率。因此,小编为各位老师准备了这篇初二数学教案之四边形教学设计,希望可以帮助到您!

1.教材分析

(1)知识结构:

(2)重点和难点分析:

重点:四边形的有关概念及内角和定理.因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用.

难点:四边形的概念及四边形不稳定性的理解和应用.在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上“在同一平面内”这个条件,这几个字的意思学生不好理解,所以是难点.

2.教法建议

(1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生熟悉到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的爱好.

(2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念.

(3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决.结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的熟悉.

(4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题.

一、素质教育目标

(一)知识教学点

1.使学生把握四边形的有关概念及四边形的内角和外角和定理.

2.了解四边形的不稳定性及它在实际生产,生活中的应用.

(二)能力练习点

1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.

2.通过推导四边形内角和定理,对学生渗透化归思想.

3.会根据比较简单的条件画出指定的四边形.

4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.

(三)德育渗透点

使学生熟悉到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的爱好.

(四)美育渗透点

通过四边形内角和定理数学,渗透统一美,应用美.

二、学法引导

类比、观察、引导、讲解

三、重点·难点·疑点及解决办法

1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题.

2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用.

3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角.

四、课时安排

2课时

五、教具学具预备

投影仪、胶片、四边形模型、常用画图工具

六、师生互动活动设计

教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.

以上就是初二数学教案之四边形教学设计的全部内容,希望各位老师和学生能够喜欢!

相关推荐:

初二数学教案:可化为一元一次方程的分式方程  

初二数学教案:含字母系数的一元一次方程 

标签:数学教案

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。