您当前所在位置:首页 > 初中 > 教案 > 初三教案 > 数学教案

数学教案你能证明它们吗

编辑:sx_chenj

2013-10-31

数学需要大家对数学的熟悉,才能让学生学好数学,下面是数学教案你能证明它们吗,欢迎参考!

一、教学目标:

1、了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。

2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。

3、结合实例休会反证的含义。

二、教学重点:了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。

教学难点:能够用综合法证明等腰三角形的关性质定理和判定定理。

三、教学方法:观察法。

四、教学过程:

复习:

1、 什么是等腰三角形?

2、  你会画一个等腰三角形吗?并把你画的等腰三角形栽剪下来。

3、试用折纸的办法回忆等腰三角形有哪些性质?

新课讲解:

在《证明(一)》一章中,我们已经证明了有关平行线的一些结论,运用下面的公理和已经证明的定理,我们还可以证明有关三角形的一些结论。

同学们和我一起来回忆上学期学过的公理

w        本套教材选用如下命题作为公理 :

w        1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;

w        2.两条平行线被第三条直线所截,同位角相等;

w        3.两边夹角对应相等的两个三角形全等; (SAS)

w        4.两角及其夹边对应相等的两个三角形全等; (ASA)

w        5.三边对应相等的两个三角形全等; (SSS)

w        6.全等三角形的对应边相等,对应角相等.

由公理5、3、4、6可容易证明下面的推论:

推论 两角及其中一角的对边对应相等的两个三角形全等。(AAS)

证明过程:

已知:∠A=∠D,∠B=∠E,BC=EF

求证:△ABC≌△DEF

证明:∵∠A=∠D,∠B=∠E(已知)

∵∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和等于180°)

∠C=180°-(∠A+∠B)

∠F=180°-(∠D+∠E)

∠C=∠F(等量代换)

BC=EF(已知)

△ABC≌△DEF(ASA)

这个推论虽然简单,但也应让学生进行证明,以熟悉的基本要求和步骤,为下面的推理证明做准备。

议一议:

(1)还记得我们探索过的等腰三角形的性质吗?

(2)你能利用已有的公理和定理证明这些结论吗?

等腰三角形(包括等边三角形)的性质学生已经探索过,这里先让学生尽可能回忆出来,然后再考虑哪些能够立即证明。

定理:等腰三角形的两个底角相等。

这一定理可以简单叙述为:等边对等角。

已知:如图,在ABC中,AB=AC。

求证:∠B=∠C

我们刚才利用折叠的方法说明了这两个底角相等。实际上,折痕将等腰三角形分成了两个全等三角形。能否通过作一条线段,得到两个全等的三角形,从而证明这两个底角相等呢?

证明:取BC的中点D,连接AD。

∵AB=AC,BD=CD,AD=AD,

∴△ABC△≌△ACD  (SSS)

∴∠B=∠C (全等三角形的对应边角相等)

让同学们通过探索、合作交流找出其他的证明方法。

想一想:

在上图中,线段AD还具有怎样的性质?为什么?由此你能得到什么结论?

应让学生回顾前面的证明过程,思考线段AD具有的性质和特征,从而得到结论,这一结合通常简述为“三线合一”。

推论 等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合。

随堂练习:

做教科书第4页第1,2题。

课堂小结:

通过本课的学习我们了解了作为基础的几条公理的内容,掌握证明的基本步骤和书写格式。经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。探体会了反证法的含义。

五、课外作业:

教科书第5页第1,2题。

六、板述设计:

上面就是为大家准备的数学教案你能证明它们吗,希望对各位老师有所帮助!

相关推荐

一元一次方程的应用教案例5

 九年级数学《垂直于弦的直径》教案 

标签:数学教案

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。