您当前所在位置:首页 > 初中 > 教案 > 初三教案 > 数学教案

2014初中九年级苏教版数学教案

编辑:sx_songyn

2014-06-24

同学们,精品学习网为您整理了2014初中九年级苏教版数学教案,希望帮助您提供多想法。

教材内容

1.本单元教学的主要内容:

二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.

2.本单元在教材中的地位和作用:

二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.

教学目标

1.知识与技能

(1)理解二次根式的概念.

(2)理解 (a≥0)是一个非负数,( )2=a(a≥0), =a(a≥0).

(3)掌握 • = (a≥0,b≥0), = • ;

= (a≥0,b>0), = (a≥0,b>0).

(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.

2.过程与方法

(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.

(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算.

(3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.

(4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.

3.情感、态度与价值观

通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.

教学重点

1.二次根式 (a≥0)的内涵. (a≥0)是一个非负数;( )2=a(a≥0); =a(a≥0)及其运用.

2.二次根式乘除法的规定及其运用.

3.最简二次根式的概念.

4.二次根式的加减运算.

教学难点

1.对 (a≥0)是一个非负数的理解;对等式( )2=a(a≥0)及 =a(a≥0)的理解及应用.

2.二次根式的乘法、除法的条件限制.

3.利用最简二次根式的概念把一个二次根式化成最简二次根式.

教学关键

1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.

2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神.

单元课时划分

本单元教学时间约需11课时,具体分配如下:

21.1  二次根式            3课时

21.2  二次根式的乘法      3课时

21.3  二次根式的加减      3课时

教学活动、习题课、小结     2课时

21.1  二次根式

第一课时

教学内容

二次根式的概念及其运用

教学目标

理解二次根式的概念,并利用 (a≥0)的意义解答具体题目.

提出问题,根据问题给出概念,应用概念解决实际问题.

教学重难点关键

1.重点:形如 (a≥0)的式子叫做二次根式的概念;

2.难点与关键:利用“ (a≥0)”解决具体问题.

教学过程

一、复习引入

(学生活动)请同学们独立完成下列三个问题:

问题1:已知反比例函数y= ,那么它的图象在第一象限横、纵坐标相等的点的坐标是___________.

问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.

问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.

老师点评:

问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x= ,所以所求点的坐标( , ).

问题2:由勾股定理得AB=

问题3:由方差的概念得S=  .

二、探索新知

很明显 、 、 ,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号.

(学生活动)议一议:

1.-1有算术平方根吗?

2.0的算术平方根是多少?

3.当a<0, 有意义吗?

老师点评:(略)

例1.下列式子,哪些是二次根式,哪些不是二次根式: 、 、 、 (x>0)、 、 、- 、 、 (x≥0,y≥0).

分析:二次根式应满足两个条件:第一,有二次根号“ ”;第二,被开方数是正数或0.

解:二次根式有: 、 (x>0)、 、- 、 (x≥0,y≥0);不是二次根式的有: 、 、 、 .

例2.当x是多少时, 在实数范围内有意义?

分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0, 才能有意义.

解:由3x-1≥0,得:x≥

当x≥ 时, 在实数范围内有意义.

三、巩固练习

教材P练习1、2、3.

四、应用拓展

例3.当x是多少时, + 在实数范围内有意义?

分析:要使 + 在实数范围内有意义,必须同时满足 中的≥0和 中的x+1≠0.

解:依题意,得

由①得:x≥-

由②得:x≠-1

当x≥- 且x≠-1时, + 在实数范围内有意义.

例4(1)已知y= + +5,求 的值.(答案:2)

(2)若 + =0,求a2004+b2004的值.(答案: )

五、归纳小结(学生活动,老师点评)

本节课要掌握:

1.形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号.

2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.

六、布置作业

1.教材P8复习巩固1、综合应用5.

2.选用课时作业设计.

 教材内容
    1.本单元教学的主要内容:
    二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.
    2.本单元在教材中的地位和作用:
    二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.
    教学目标
    1.知识与技能
    (1)理解二次根式的概念.
    (2)理解 (a≥0)是一个非负数,( )2=a(a≥0), =a(a≥0).
    (3)掌握 • = (a≥0,b≥0), = • ;
 = (a≥0,b>0), = (a≥0,b>0).
    (4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.
    2.过程与方法
    (1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.
    (2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算.
    (3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.
    (4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.
    3.情感、态度与价值观
    通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.
    教学重点
    1.二次根式 (a≥0)的内涵. (a≥0)是一个非负数;( )2=a(a≥0); =a(a≥0)及其运用.
    2.二次根式乘除法的规定及其运用.
    3.最简二次根式的概念.
    4.二次根式的加减运算.
    教学难点
    1.对 (a≥0)是一个非负数的理解;对等式( )2=a(a≥0)及 =a(a≥0)的理解及应用.
    2.二次根式的乘法、除法的条件限制.
    3.利用最简二次根式的概念把一个二次根式化成最简二次根式.
    教学关键
    1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.
    2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神.
    单元课时划分
    本单元教学时间约需11课时,具体分配如下:
    21.1  二次根式            3课时
    21.2  二次根式的乘法      3课时
    21.3  二次根式的加减      3课时
    教学活动、习题课、小结     2课时

21.1  二次根式
第一课时
    教学内容
    二次根式的概念及其运用
    教学目标
    理解二次根式的概念,并利用 (a≥0)的意义解答具体题目.
    提出问题,根据问题给出概念,应用概念解决实际问题.
    教学重难点关键
    1.重点:形如 (a≥0)的式子叫做二次根式的概念;
    2.难点与关键:利用“ (a≥0)”解决具体问题.
    教学过程
    一、复习引入
    (学生活动)请同学们独立完成下列三个问题:
    问题1:已知反比例函数y= ,那么它的图象在第一象限横、纵坐标相等的点的坐标是___________.
问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.
 
    问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.
    老师点评:
问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x= ,所以所求点的坐标( , ).
    问题2:由勾股定理得AB= 
    问题3:由方差的概念得S=  .
    二、探索新知
    很明显 、 、 ,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号.
    (学生活动)议一议:
    1.-1有算术平方根吗?
    2.0的算术平方根是多少?
    3.当a<0, 有意义吗?
    老师点评:(略)
    例1.下列式子,哪些是二次根式,哪些不是二次根式: 、 、 、 (x>0)、 、 、- 、 、 (x≥0,y≥0).
    分析:二次根式应满足两个条件:第一,有二次根号“ ”;第二,被开方数是正数或0.
    解:二次根式有: 、 (x>0)、 、- 、 (x≥0,y≥0);不是二次根式的有: 、 、 、 .
    例2.当x是多少时, 在实数范围内有意义?
    分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0, 才能有意义.
    解:由3x-1≥0,得:x≥ 
    当x≥ 时, 在实数范围内有意义.
    三、巩固练习
    教材P练习1、2、3.
    四、应用拓展
    例3.当x是多少时, + 在实数范围内有意义?
    分析:要使 + 在实数范围内有意义,必须同时满足 中的≥0和 中的x+1≠0.
    解:依题意,得 
    由①得:x≥- 
    由②得:x≠-1
    当x≥- 且x≠-1时, + 在实数范围内有意义.
    例4(1)已知y= + +5,求 的值.(答案:2)
(2)若 + =0,求a2004+b2004的值.(答案: )
    五、归纳小结(学生活动,老师点评)
    本节课要掌握:
    1.形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号.
    2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.
    六、布置作业
    1.教材P8复习巩固1、综合应用5.
2.选用课时作业设计.

标签:数学教案

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。