您当前所在位置:首页 > 初中 > 教案 > 初三教案 > 数学教案

2015九年级上册数学第二章教案(必备)

编辑:sx_zhanglz

2015-09-22

初三是初中生活最重要的一年,要特别注意哦!精品学习网初中频道为大家准备了九年级上册数学第二章教案,欢迎阅读与选择!

一、教学目标:

1.知识与技能:

通过对多个实际问题的分析,让学生感受二次函数作为刻画现实世界有效模型的意义;通过观察和分析,学生归纳出二次函数的概念并能够根据函数特征识别二次函数.

2.数学思考:

学生能对具体情境中的数学信息作出合理的解释,能用二次函数来描述和刻画现实事物间的函数关系.

3.解决问题:

体验数学与日常生活密切相关,让学生认识到许多问题可以用数学方法解决,体验实际问题“数学化”的过程.

4.情感与态度:

通过观察、归纳、猜想、验证等教学活动,给学生创造成功机会,使他们爱学、乐学、学会,同时培养学生勇于探索,积极合作精神以及公平竞争的意识.

二、教学重点、难点:

教学重点:认识二次函数,经历探索函数关系、归纳二次函数概念的过程.

教学难点:根据函数解析式的结构特征,归纳出二次函数的概念.

三、教学方法和教学手段:

在确定二次函数的概念和寻求生活实例中的二次函数关系式的过程中,引导学生观察、比较、分析和概括,以小组讨论的形式,进行合作探究.

在教学手段方面,选择了多媒体课件辅助教学的方式.

四、教学过程:

师生活动 设计意图

1、 问题感知,情境切入.

教师展示实际问题:

“第18届世界杯足球赛”是今年夏天最“热”的一个话题,绿荫场上运动员挥汗如雨,绿荫场外教练员运筹帷幄.足球运动是一项对运动员状态(包括体能、速度和技术意识)要求很高的项目,一般情况下,足球运动员的状态会随着时间的变化而变化:比赛开始后,球员慢慢进入状态,中间有一段时间球员保持较为理想的状态,随后球员的状态慢慢下降.经实验分析可知:球员的状态综合指数y随时间t的变化规律有如下关系:

(1)比赛开始后第10分钟时与比赛开始后第50分钟时比较,什么时间球员的状态更好?

(2)比赛开始后多少分钟时,球员的状态最好,这样的最好状态能持续多少分钟?

通过学生之间的讨论,很容易得出第(1)问的答案:比赛开始后第10分钟时,y = 140;比赛开始后第50分钟时,y = 220;所以,比赛开始后第50分钟时球员的状态更好.

当学生开始进行第(2)问的解答时,遇到了不同的困难:

(1)不知道如何讨论当50 t 90时,y的变化范围?

(2)通过模仿一次函数的性质,学生求出了函数y =  中,y的变化范围是 .却无法说出这样做的数学依据是什么?

所有的困难都指向一个焦点问题:

y =  是个什么样的函数?它具有什么样的独特性质?

因此,学生产生了研究函数y =  的兴趣,教师趁势提出今天的学习内容.

以“世界杯足球赛”这样贴近学生生活实际的问题为背景,力求更好地激发学生的求知欲,使之成为主动、积极的探索者,并在解决实际问题的过程中体验成功的快乐,同时为新课的引出和学习奠定了基础.

这是一道结合实际的自编题,其中的数据来源于自己做的社会调查.足球运动是一项集体运动项目,对运动员的配合意识要求很高,所以运动员上场后30分钟左右才进入最佳状态,中场休息后状态仍能保持到最佳,50分钟后由于体能的下降影响了状态的发挥.

2、讲解新课,提炼知识.

(1)对比、分析

教师举出生活中的其它实例,感受二次函数的意义,进一步深化对二次函数概念的认识.

① 如图,正方形中圆的半径是4cm,阴影部分的面积Q(cm2)和正方形的边长a(cm)的函数关系式是____________________.

② 某种药品现价每盒26元,计划两年内每年的降价率都为p,那么,两年后这种药品每盒的价格M(元)和年降价率p的函数关系式是____________________.

答案:M = 26(1- p)2

(2)类比、迁移

教师顺势提问:对y =  、Q = a2 - 16 、M = 26(1- p)2这三个函数你能用一个一般形式来表示吗?

教师参与到学生的分组讨论中去,合作交流,注意及时抓住学生智慧火花的闪现进行引导.教师鼓励学生用不同字母表示,只要把握概念的实质即可,必要时可提示学生,类比一次函数的知识.

(3)二次函数的认识

一般地,我们把形如y = ax2 + bx + c(a≠0)(说明:括号内的条件,在第(4)步之后再补写)的函数叫做二次函数,其中a、b分别是二次项系数、一次项系数,c是常数项.

(4)加深理解

二次函数的定义给出后,教师引导学生分别讨论“a、b、c的取值范围”.学生就问题自由发言,教师充分引导学生发表自己的看法,只要合理,都应肯定.最后师生达到共识:

① a不能为0,因为当a=0时,右边不再是x的二次式;

② b、c都能为0,因为当b=0 、c=0或b、c都为0时,右边仍是x的二次式.

教师对所得出的常量范围,进行概念补写.

通过两个实例的分析,让学生通过自己列解析式,来思考所列解析式的结构特征,为概括二次函数的定义打下基础.

精品小编为大家提供的九年级上册数学第二章教案,就到这里了,愿大家都能在新学期努力,丰富自己,锻炼自己。

相关推荐:

九年级数学上册第一单元教案设计:因式分解法  

九年级上册数学第一单元教案设计:公式法  

标签:数学教案

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。