编辑:sx_yanxf
2016-04-21
随话说“老师是辛勤的园丁”,对于同学们每天学习的新课时,都需要老师提前备好课,做好教案设计,下文为大家推荐了《分解因式》教案设计模板,供大家参考。
●教学目标 (一)教学知识点 使学生了解因式分解的意义,知道它与整式乘法在整式变形过程中的相反关系. (二)能力训练要求 通过观察,发现分解因式与整式乘法的关系,培养学生的观察能力和语言概括能力. (三)情感与价值观要求 通过观察,推导分解因式与整式乘法的关系,让学生了解事物间的因果联系.
●教学重点 1.理解因式分解的意义. 2.识别分解因式与整式乘法的关系.
●教学难点 通过观察,归纳分解因式与整式乘法的关系.
●教学方法 观察讨论法
●教具准备 投影片一张 记作(§12.1 A)
●教学过程 Ⅰ.创设问题情境,引入新课 [师]大家会计算(a+b)(a-b)吗? [生]会.(a+b)(a-b)=a2-b2. [师]对,这是大家学过的平方差公式,我们是在整式乘法中学习的.从式子(a+b)(a-b)=a2-b2中看,由等号左边可以推出等号右边,那么从等号右边能否推出等号左边呢?即a2-b2=(a+b)(a-b)是否成立呢? [生]能从等号右边推出等号左边,因为多项式a2-b2与(a+b)(a-b)既然相等,那么两个式子交换一下位置还成立. [师]很好,a2-b2=(a+b)(a-b)是成立的,那么如何去推导呢?这就是我们即将学习的内容:因式分解的问题. Ⅱ.讲授新课 1.讨论993-99能被100整除吗?你是怎样想的?与同伴交流. [生]993-99能被100整除. 因为993-99 =99×992-99 =99×(992-1) =99×9800 =99×98×100 其中有一个因数为100,所以993-99能被100整除. [师]993-99还能被哪些正整数整除? [生]还能被99,98,980,990,9702等整除. [师]从上面的推导过程看,等号左边是一个数,而等号右边是变成了几个数的积的 形式. 2.议一议 你能尝试把a3-a化成n个整式的乘积的形式吗?与同伴交流. [师]大家可以观察a3-a与993-99这两个代数式. [生]a3-a=a(a2-1)=a(a-1)(a+1) 3.做一做 (1)计算下列各式: ①(m+4)(m-4)=__________; ②(y-3)2=__________; ③3x(x-1)=__________; ④m(a+b+c)=__________; ⑤a(a+1)(a-1)=__________. [生]解:①(m+4)(m-4)=m2-16; ②(y-3)2=y2-6y+9; ③3x(x-1)=3x2-3x; ④m(a+b+c)=ma+mb+mc; ⑤a(a+1)(a-1)=a(a2-1)=a3-a. (2)根据上面的算式填空: ①3x2-3x=( )( ); ②m2-16=( )( ); ③ma+mb+mc=( )( ); ④y2-6y+9=( )2. ⑤a3-a=( )( ). [生]把等号左右两边的式子调换一下即可.即: ①3x2-3x=3x(x-1); ②m2-16=(m+4)(m-4); ③ma+mb+mc=m(a+b+c); ④y2-6y+9=(y-3)2; ⑤a3-a=a(a2-1)=a(a+1)(a-1). [师]能分析一下两个题中的形式变换吗? [生]在(1)中,等号左边都是乘积的形式,等号右边都是多项式;在(2)中正好相反,等号左边是多项式的形式,等号右边是整式乘积的形式. [师]在(1)中我们知道从左边推右边是整式乘法;在(2)中由多项式推出整式乘积的形式是因式分解. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式(factorization). 4.想一想 由a(a+1)(a-1)得到a3-a的变形是什么运算?由a3-a得到a(a+1)(a-1)的变形与这种运算有什么不同?你还能举一些类似的例子加以说明吗? [生]由a(a+1)(a-1)得到a3-a的变形是整式乘法,由a3-a得到a(a+1)(a-1)的变形是分解因式,这两种过程正好相反. [生]由(a+b)(a-b)=a2-b2可知,左边是整式乘法,右边是一个多项式;由a2-b2=(a+b)(a-b)来看,左边是一个多项式,右边是整式的乘积形式,所以这两个过程正好相反. [师]非常棒.下面我们一起来总结一下. 如:m(a+b+c)=ma+mb+mc (1) ma+mb+mc=m(a+b+c) (2) 联系:等式(1)和(2)是同一个多项式的两种不同表现形式. 区别:等式(1)是把几个整式的积化成一个多项式的形式,是乘法运算. 等式(2)是把一个多项式化成几个整式的积的形式,是因式分解. 即ma+mb+mc m(a+b+c). 所以,因式分解与整式乘法是相反方向的变形. 5.例题 投影片(§12.1 A) 下列各式从左到右的变形,哪些是因式分解? (1)4a(a+2b)=4a2+8ab; (2)6ax-3ax2=3ax(2-x); (3)a2-4=(a+2)(a-2); (4)x2-3x+2=x(x-3)+2. [生](1)左边是整式乘积的形式,右边是一个多项式,因此从左到右是整式乘法,而不是因式分解; (2)左边是一个多项式,右边是几个整式的积的形式,因此从左到右的变形是因式分解; (3)和(2)相同,是因式分解; (4)是因式分解. [师]大家认可吗? [生]第(4)题不对,因为虽然x2-3x=x(x-3),但是等号右边x(x-3)+2整体来说它还是一个多项式的形式,而不是乘积的形式,所以(4)的变形不是因式分解. Ⅲ.课堂练习 连一连 解: Ⅳ.课时小结 本节课学习了因式分解的意义,即把一个多项式化成几个整式的积的形式;还学习了整式乘法与分解因式的关系是相反方向的变形. Ⅴ.课后作业 习题12.1 1.连一连 解: 2.解:(2)、(3)是分解因式. 3.因19992+1999=1999(1999+1)=1999×2000,所以19992+1999能被1999整除,也能被2000整除. (2)因为16.9×+15.1× =×(16.9+15.1) =×32=4 所以16.9× +15.1×能被4整除. 4.解:当R1=19.2,R2=32.4,R3=35.4,I=2.5时, IR1+IR2+IR3 =I(R1+R2+R3) =2.5×(19.2+32.4+35.4) =2.5×87 =217.5Ⅵ.活动与探究 已知a=2,b=3,c=5. 求代数式a(a+b-c)+b(a+b-c)+c(c-a-b)的值. 解:当a=2,b=3,c=5时, a(a+b-c)+b(a+b-c)+c(c-a-b) =a(a+b-c)+b(a+b-c)-c(a+b-c) =(a+b-c)(a+b-c) =(2+3-5)2=0
●板书设计 §12.1 分解因式
一、1.讨论993-99能被100整除吗? 2.议一议 3.做一做 4.想一想(讨论整式乘法与分解因式的联系与区别) 5.例题讲解
二、课堂练习
三、课时小结
四、课后作业
看完精品学习网推荐的《分解因式》教案设计模板,相信大家现在对教学内容有了更好的规划了吧。
相关推荐:
标签:数学教案
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。