编辑:sx_yanxf
2016-07-21
同学们现在正处于初一阶段,这是一个初中最为关键的时期。精品学习网初中频道为大家准备了七年级数学一次函数和它的图象说课稿范文,欢迎阅读与选择!
尊敬的各位评委、各位老师:
你们好!
今天我说的课是北师大版数学八年级上册第六章第3节《一次函数的图象》第一课时。下面,我将从教材分析、学生分析、教学目标、教学重、难点、教学方法、学法指导、教学过程及板书设计这八个方面对本课的设计进行说明。
一、教材分析
本节课的内容是一次函数的图象。学本节课之前,学生已学习了变量与函数、平面直角坐标系、以及一次函数的概念等有关的知识。本节是继续学习反比例函数、二次函数图象和性质的重要基础,也是学习高中代数、解析几何及其他数学分支的重要基础。数形结合的思想、化归思想及解析法思想是本节内容所包含的主要数学思想。根据《数学新课程标准》的要求,结合以上分析从而确定教学目标。
二、学生分析
八年级的学生对身边的事物充满了好奇,对一些自认为可行却有可能碰壁的问题充满了探求的欲望。他们非常乐意动手操作,有很强的好胜心和表现欲,同时学生也具备了一定的归纳、总结、表达的能力,基本上能在教师的引导下就某某一个主题展开讨论。
三、教学目标
1 知识目标:
①经历作图过程,初步了解作函数图象的一般步骤。
②理解一次函数的表达式与图象之间的关系。
③能较熟练地做出一次函数的图象。
2 能力目标:
①由关系式做出函数的图象,培养学生数形结合的意识和能力。
②加强新旧知识的联系,促进学生新的认知结构的建构。
3 情感目标:
①通过画一次函数的图象,体验数与形的内在联系,感受函数图象的简洁美。
②在探究一次函数图象形状的过程中,渗透与他人交流合作的意识和探究精神。
四、教学重点、难点:
1 教学重点:能熟练地作出一次函数的图象,并理解一次函数的表达式与图象之间的对应关系。
2 教学难点:理解一次函数的表达式,与图象之间的对应关系并会做有关的题目。
五、教学方法
依据当前素质教育的要求,以人为本,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以学生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。基于本节课的特点:应着重采用数形结合的教学方法,以及由特殊到一般的方法、类比法,还有利用多媒体现代教学手段,通过图片和材料的展示来激发学生的学习兴趣,把抽象的知识直观地展现在学生面前,逐步将他们感性的认识引领到理性的思考。
六、学法指导
“授之于鱼”不如“授之于渔”。作为一名合格的老师,不能只局限于让学生如何学会,而是要让学生如何会学。培养学生的画图能力,主要是培养学生的看图、识图能力。培养思维能力,主要是学会根据概念的直观表象,归纳得出概念的性质,由特殊到一般,由简单到复杂,运用类比、归纳、数形结合等方法,培养学生分析问题、解决问题的能力。
七、教学过程
1、由提问复习,引入新课函数的图象的画法与性质.
问题:我们之前学习了哪些函数,你能写出它们的表达式吗?
2、引出函数图象的概念:把一个函数的自变量x与对应的函数y的值分别作为点的横坐标和纵坐标,在直角坐标系中描出它的对应点,所有这些点组的图形叫做这个函数的图像。
3、活动一:作出一次函数 y=2x+1的图象。
(1)、列表:
x
…
-2
-1
0
1
2
…
y=2x+1
…
-3
-1
1
3
5
…
(2)、描点:以表中各组对应值作为点的坐标,在直角坐标系中描出这组点。
(3)、连线:把这些点一次连接起来。
4、提问观察所作的图像,发现了什么?
这是引导学生从感性上认识一次函数的图像:是一条直线。但这不能马上定论:一次函数的图象是一条直线,而应予以证明。这也是本节课的难点所在,我借助以下两个问题突破了这个难点。从图象的完备性和纯粹性两个角度给予证明:坐标满足一次函数表达式的点都在直线上;图象上的点的坐标都满足函数表达式。
设计环节分别是:让学生随意取一个满足函数表达式y=2x+1的点并在坐标系中画出这个点,看看其是否在原直线上;让学生动手操作:在直线上随意取一个点,量一量这个点到两坐标轴的距离是多少,写些点的坐标,看看此点的坐标是否满足表达式y=2x+1。 我觉得这个证明、分析过程正是培养学生严密的数学思维、一丝不苟的探究精神的最好载体,不宜一带而过或忽略。
例1 在直角坐标系中画出下列函数的图象,并求出它们与坐标轴交点的坐标: y=-2x+5。
问题1:y=-2x+5.函数图象是什么图形?
问题2:在平面直角坐标系中确定一条直线需要几个点?
问题3:你会找哪两个点?和同桌讨论,取那些点画图时比较方便?
5、点评学生的回答,并讲解:两点确定一条直线,因此作一次函数图象时,取一次函数图象与横纵坐标轴的交点就可以作出一次函数图象。
6、练一练
1、已知直线y= (k+1)x+1-2k,若直线与y轴交于(0,-1),则k=_____;若直线与x轴交于点(3,0),则k=_____。
2、直线y=-3x+4与x轴的交点坐标是 ________,与y轴的交点坐标是________.
3、下列各点,不在一次函数y=2x+1图象上的是 ( )
a(1,3)b(-1,-1)c(0.5,2)d(0,2)
(设计思路:题分成简单、中等和难三个档次,分别适合各种层次的学生,因材施教,让不同的学生学习不同的数学)
7、思考题:已知一次函数y=2x+4,求其与两坐标轴所围成的三角形的面积?(设计思路:出这道题的目的是为了把一次函数图象的问题转化成直角三角形面积的问题,体现了数学中各知识点之间的联系和转换)
8、课后小结
实践证明,在教学中,充分利用教学方法的优势,为学生创造一个良好的学习氛围,来引导学生发现问题、分析问题,从而解决问题。多媒体课件支撑着整个教学过程,使学生在一个生动有趣的课堂上愉快地接受知识。
八、板书设计:
6.3 一次函数的图像
1、什么是一次函数?什么是正比例函数?
2、函数图像的概念:把一个函数的自变量x与对应的函数y的值分别作为点的横坐标和纵坐标,在直角坐标系中描出它的对应点,所有这些点组的图形叫做这个函数的图像。
3、作出一次函数 y=2x+1的图象。
4、做一次函数图像的一般步骤:列表、描点、连线。
5、所有的一次函数的图象都是一条直线。一次函数y=kx+b图象,习惯上也称为直线y=kx+b
6、 例1 在直角坐标系中画出下列函数的图象,并求出它们与坐标轴交点的坐标:y=-2x+5。
最后,希望各位评委老师对本堂说课提出宝贵意见,谢谢!
相信大家对于上文提供的七年级数学一次函数和它的图象说课稿范文相关内容一定仔细阅读了吧?祝大家学习进步。
相关推荐:
标签:数学说课稿
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。