编辑:sx_yangk
2017-11-08
为了帮助考生更好的进行复习,以下是最新数学公式,希望对考生复习有帮助。
1,a(1)=a,a(n)为公差为r的等差数列。
1-1,通项公式,
a(n)=a(n-1)+r=a(n-2)+2r=...=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r.
可用归纳法证明。
n=1时,a(1)=a+(1-1)r=a。成立。
假设n=k时,等差数列的通项公式成立。a(k)=a+(k-1)r
则,n=k+1时,a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r.
通项公式也成立。
因此,由归纳法知,等差数列的通项公式是正确的。
1-2,求和公式,
S(n)=a(1)+a(2)+...+a(n)
=a+(a+r)+...+[a+(n-1)r]
=na+r[1+2+...+(n-1)]
=na+n(n-1)r/2
同样,可用归纳法证明求和公式。(略)
2,a(1)=a,a(n)为公比为r(r不等于0)的等比数列。
2-1,通项公式,
a(n)=a(n-1)r=a(n-2)r^2=...=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1).
可用归纳法证明等比数列的通项公式。(略)
2-2,求和公式,
S(n)=a(1)+a(2)+...+a(n)
=a+ar+...+ar^(n-1)
=a[1+r+...+r^(n-1)]
r不等于1时,
S(n)=a[1-r^n]/[1-r]
r=1时,
S(n)=na.
同样,可用归纳法证明求和公式。
最新数学公式就先到这儿了,想要了解更多精彩的内容,精品学习网会持续为大家跟新,大家可进入精品学习网首页选择自己需要的来查看呦~~~
标签:数学
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。