编辑:sx_yangk
2014-07-08
聪明出于勤奋,天才在于积累。我们要振作精神,下苦功学习。精品学习网编辑了2014最新数学分类知识点三角形的半角定理,以备借鉴。
三角形的半角定理
做三角形内切圆,在AB,AC,BC边上的切点分别为D,E,F l=(a+b+c)/2
则有r=(l-a)tan(A/2)=(l-b)tan(B/2)=(l-c)tan(C/2)
半角定理还可以写成tanA/2=[1/(s-a)]√[(s-a)(s-b)(s-c)/s],tanB/2=[1/(s-b)]√[(s-a)(s-b)(s-c)/s],tanC/2=[1/(s-c)]√[(s-a)(s-b)(s-c)/s]。
其中A、B、C为三角形内角的符号,s=1/2(a+b+c)
证明:由余弦定理cosA=(b^2+c^2-a^2)/2bc,得
1-cosA=(2ab-b^2-c^2+a^2)/2bc=[a^2-(b-c)^2]/2bc=(a+b-c)(a-b+c)/2bc
1+cosA= (2ab+b^2+c^2-a^2)/2bc=[(b+c)^2-a^2]/2bc=(a+b+c)(b+c-a)/2bc
设a+b+c=2s,那么-a+b+c=2(s-a),a-b+c=2(s-b),a+b-c=2(s-c)。
因此上面结论可以写成:1-cosA=2(s-c)2(s-b)/2bc=2(s-b)(s-c)/bc
1+cosA=2s2(s-a)/2bc=2s(s-a)/bc。
因为A/2是锐角,所以把上面所得到的结果代入公式tanA/2=√(1-cos
A)/(1+cosA),就可以得到tanA/2=√[(s-b)(s-c)/s(s-a)]。
又因为s-a>0,所以上面的式子还可以写成:tanA/2=√[(s-a)(s-b)(s-c)/s(s-a)^2]=[1/(s-a)]√[(s-a)(s-b)(s-c)/s]。由此便证明了半角定理。
由精品学习网为您提供的2014最新数学分类知识点三角形的半角定理,希望给您带来启发!
标签:数学
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。