编辑:
2016-02-23
3.三角训练中要抓基本公式的熟练运用,突出正用、逆用和变式用.近几年呈降温趋势.训练题型、方法、难度等达到教材水准即可.
4.立体几何(主体).突出空间、立体.即把线段、线面、面面的位置关系考查置于某几何体的情景中.几何体以棱柱、棱锥为重点.棱柱中又以三棱柱、正方体为重点;棱锥以一条侧棱或一个侧面垂直于底面为重点,棱柱和棱锥的结合体也要重视.位置关系以判断或证明垂直为重点,突出三垂线定理及逆定理的灵活运用.空间角以二面角为重点,强化三垂线定理定角法.空间距以点面距、线面距为重点,二者结合尤为重要.等积转化、等距转化是最常用方法.面积、体积计算,解答题涉及棱锥(特别是三棱锥)居多.因为三棱锥体积求法灵活,思路宽广.
5.解析几何(主体).以基本性质、基本运算为目标.客观题照顾面,解答题应综合,突出直线和圆锥曲线的交点、弦长、轨迹等,突出与函数的联系.
二.研究高考,科学安排
近几年,高考数学试题稳中有变,变中求新.其特点是:稳以基础为主体,变以选拔为导向,能力寓灵活之中.鉴于此,复习安排要做到:二个加强三个突出.
1.客观题要加强速度和正确率的强化训练.高考采取了客观题(选择与填空)减少运算量、降低难度,让学生有更多的时间完成解答题,充分发挥选拔功能的做法.这就需要第二轮复习要在速度,准确率上下功夫.定时定量训练每周至少1次,总量不得少于8次,达到大部分学生一节课完成,优秀生用30~35分钟完成,失分不多于2个题目分的目标.题目设计,数形结合(4~5个),组合选(2~3个),估算或特值法(2~3个).
2.加强代数与几何的有机联系.2003年考题,在解法代数化的基础上,鲜明特点是代数与几何联系考查明显加强了.如(22)等.复习中代数、几何各自为战的现象必须根治.
3.突出基础知识的灵活运用.基础知识的灵活运用就是能力.高考试题总体分析来看,基础性强了,但能力要求不低,其加强能力考查的途径之一就是提高知识的灵活运用.让题海战术、死记硬背、硬套模式的下去,让重视分析、注重选法、思维灵活、学习潜力大的上来.
4.突出三多--发展训练.一题多问,层层递进是高考命题的又一特点.复习中,要多练多问题,多练由大到小的分解训练,多做结论发散训练;发展一问为多问,一证为多证多算等.
5.突出学生阅读分析能力训练.试题叙述较长,部分学生就摸不着头脑,抓不住关键,从而束手无策.这在应用题中较为普遍,其原因就是阅读分析能力低.解决的途径是,让学生自己读题、审题、作图、识图,强化用数学思想和方法在解题中的指导性,强化变式,引导学生认识差之毫厘,谬之千里.另外,有意识,有目的地选择一些阅读材料,如与生产生活密切相关的应用题,利用所给信息解题等.
标签:吉林高考数学
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。