您当前所在位置:首页 > 高考 > 高考数学 > 高考数学答题技巧

名师讲解高考数学抽象函数求解技巧

编辑:sx_liujy

2015-12-23

函数是每年高考的热点,而抽象函数性质的运用又是函数的难点之一。抽象函数是指没有给出具体的函数解析式或图像,但给出了函数满足的一部分性质或运算法则。此类函数试题既能全面地考查学生对函数概念的理解及性质的代数推理和论证能力,又能综合考查学生对数学符号语言的理解和接受能力,以及对一般和特殊关系的认识。下面通过例题来探讨抽象函数求解技巧

例:设y=蕊(x)是定义在区间[-1,1]上的函数,且满足条件:

(i)f(-1)=f(1)=0;

(ii)对任意的u,v∈[-1,1],都有—f(u)-f(v)—≤—u-v—。

(Ⅰ)证明:对任意的x∈[-1,1],都有x-1≤f(x)≤1-x;

(Ⅱ)证明:对任意的u,v∈[-1,1],都有—f(u)-f(v)—≤1。

解题:

(Ⅰ)证明:由题设条件可知,当x∈[-1,1]时,有f(x)=f(x)-f(1)≤—x-1—=1-x,即x-1≤f(x)≤1-x.

(Ⅱ)证明:对任意的u,v∈[-1,1],当—u-v—≤1时,有—f(u)-f(v)—≤1

当—u-v—>1,u·v<0,不妨设u<0,则v>0且v-u>1,其中v∈(0,1],u∈[-1,0)

要想使已知条件起到作用,须在[-1,0)上取一点,使之与u配合以利用已知条件,结合f(-1)=f(1)=0知,这个点可选-1。同理,须在(0,1]上取点1,使

之与v配合以利用已知条件。所以,—f(u)-f(v)—≤—f(u)-f(-1)—+—f(v)-f(1)—≤—u+1—+—v-1—=1+u+1-v=2-(v-u)<1

综上可知,对任意的u,v∈[-1,1]都有—f(u)-f(v)—≤1.

抽象函数求解技巧的讲解内容就是这些,精品学习网希望考生成绩可以更上一层楼。

2016年高考第一轮复习备考专题已经新鲜出炉了,专题包含高考各科第一轮复习要点、复习方法、复习计划、复习试题,大家来一起看看吧~

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。