编辑:
2015-11-18
■问题四如何避免解题中的粗心、马虎现象?
■回答粗心、马虎是很多同学存在的问题,经常出现面对很基础的题目,或因为题目没有读透、或因为某个关键的词语没有看见,或因为计算不仔细……而导致解题出错的现象,使得考试时本该得到的分数得不到,非常可惜.产生这一现象的主要原因是平时对自己要求不严,没有养成良好的解题习惯,主要表现为以下几个方面:
(1)对数学概念的理解不够透彻.很多同学对数学概念只停留于记忆,不会应用,不能从本质上加以认识、理解和领悟.如:①函数y=f(x)(x∈D)的图像与直线x=1至多有1个交点,②数列{an}中,an+1/an=2(n≥2,n∈N*).对①,有些同学没能真正理解函数的定义,而无从下手;对②,有些同学没能真正掌握等比数列的定义,而误认为{an}就是等比数列.
(2)存在想当然的思维习惯.很多同学遇到问题不认真分析和思考,缺乏理性思维,想哪是哪,不注意条件和结论的关系,不明确目标,不管对不对就盲目下结论,往往背离了正确的解题思路.
(3)考虑问题不缜密.如:①不等式kx2+kx+1>0对任意实数x恒成立,则k的取值范围是_________.忽略k=0的情况,得到错误答案(0,4);②已知A?哿B时,忽略A=B的情形;③利用等比数列前n项和公式求数列和时,忽略公比q=1的情形等.
要避免粗心、马虎现象,就得在平时的解题训练中养成良好的解题习惯,如先认真读题,透彻理解题意,再动手做题;养成良好的运算习惯,确保运算不出错;养成检查反思的习惯,解题后,同学们往往有思维定势,会沿着原来的思路检查,这样很难发现错误,因此平时要训练自己换个角度看问题的习惯,这是克服思维定势的比较有效的方法.只要大家在平时认真总结学习方法,严格要求自己,就一定能够克服粗心、马虎的不良习惯.
■问题五我们经常遇到这样的现象:做错的题经过老师讲解后会做了,可是过一段时间再做类似的题时还会做错.这是什么原因导致的?应该怎样克服?
■回答这种现象是一种普遍现象,刚刚做过题目并纠正过错误,再做类似题目时还会出错.产生这种现象的原因很简单,就是纠错不彻底.实践证明,只简单纠错,不认真分析错因,不用有针对性的补偿训练来强化巩固,则不会的还是不会,不理解的还是不能彻底理解.因此,对解题中出现的错误,我们不但要纠正,而且还要通过补偿训练进行强化巩固,才能达到纠错的目的.实际上,克服这种现象最有效的方法就是建立“错题集”.
■问题六怎样建立“错题集”?
■回答“错题集”实际上就是你学习中疑难点的“整合集”.虽然在记录“错题集”时要花费一定的功夫,要靠个人的毅力坚持下去,但这种学习方法具有“事半功倍”的效果.特别是在考试前,我们总是想有重点地看点什么,可是题目已经做过那么多了,究竟该看哪些题呢?总不能把所有的题目都拿过来重新看吧!这样也看不过来.这时,我们就会发现“错题集”是考前最好的“看点”,它展示的是平时学习的“精华”,是自己要着力解决的“疑难点”,是自己最需要“再复习”的重点,由此可以看出积累“错题集”的重要性.另外,同学们还要养成一个好习惯,就是有时间就随手翻翻“错题集”,这样能够使自己对平时学习的“疑难点”常回顾、常反思,从而达到强化记忆、深化理解的目的.
记“错题集”是“功在平时,益在久远”的.这就需要在平时学习中,突出一个“勤”字,不要怕麻烦,对出现的典型错误要及时记录,并在“错误”之后写上两句反思,长此以往地坚持,必能取得好的学习效果.
■问题七高中阶段的数学知识可以划分为哪些板块?每个板块的重点内容都是什么?
■回答现行的高中数学教材划分为以下几个模块:必修五个模块(文理通用),选修五个模块(其中文科二个模块,理科三个模块).其中的数学知识在结构上可以划分为如下几大板块:
文理通用的知识板块:
1.集合:重点内容是集合及其表示,子集、交集、并集、补集;
2.函数概念与基本初等函数:重点内容是函数的有关观念,函数的基本性质,指、对数函数的图像与性质,幂函数的性质,函数与方程,函数模型与应用,三角函数的概念,同角三角函数基本关系,三角函数诱导公式,三角函数的图像与性质,两角和与差公式、三倍角公式,几个三角恒等式;
3.解三角形:重点内容是正、余弦定理;
4.平面向量:重点内容是平面向量的有关概念,平面向量的线性运算,平面向量的坐标表示,平面向量的数量积,平面向量的平行与垂直,平面向量的应用;
5.数列:重点内容是数列的有关概念,等差数列,等比数列;
6.不等式:重点内容是基本不等式,一元二次不等式,线性规划;
7.复数:重点内容是复数的有关概念,复数的四则运算,复数的几何意义;
8.导数及其应用:重点内容是导数的有关概念,导数的几何意义,基本的求导公式与法则;利用导数研究函数的单调性与极值,导数在实际问题中的应用;
9.算法初步:重点内容是算法的有关概念,流程图,基本算法语句;
10.常用逻辑用语:重点内容是命题的四种形式,必要条件、充分条件、充分必要条件,逻辑联结词“或”、“且”、“非”,全称量词与存在量词;
11.推理与证明:重点内容是合情推理与演绎推理,分析法与综合法,反证法;
12.概率与统计:重点内容是抽样方法,总体分布估计,总体特征数估计,变量的相关性,随机事件与概率的有关概念,古典概型,几何概型,互斥事件及其概率关系;
13.立体几何:重点内容是平面及其基本性质,直线与平面平行、垂直的判定与性质,两个平面平行、垂直的判定与性质,柱、锥、台、球的表面积与体积;
14.平面解析几何:重点内容是直线的斜率与倾斜角,直线的方程,两条直线的平行关系与垂直关系,两条直线的交点,两点间、点到直线的距离,圆的方程,直线与圆、圆与圆的位置关系,空间直角坐标系,椭圆的标准方程与几何性质,双曲线的标准方程与几何性质,抛物线的标准方程与几何性质.
标签:高考数学复习指导
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。